• Spring naar de hoofdnavigatie
  • Door naar de hoofd inhoud
  • Spring naar de voettekst
  • 0 items
MMV

MMV

Natuurlijk tegen kanker

Recepten Voedingsmiddelenlijst
Uitzicht 9, Leefstijl en seksualiteit bij kanker 1
Uitzicht 8, Werk, voeding en kanker 2
  • Kanker
    • Is kanker erfelijk?
    • Genetica en epigenetica
    • Wat kan ik zelf doen?
    • Preventie
    • Steun en begeleiding
    • Kankersoorten
  • Voeding
    • Moermandieet
    • MMV-Voedingsrichtlijnen
    • Wetenschappelijke onderbouwing
    • Recepten
    • Suiker
    • Kruiden
    • Fermenteren
    • Kiemgroenten
    • Voedselbereiding
    • Uit eten met Moerman
  • Gezond leven
    • Inspanning
    • Ontspanning
    • Psyche
    • Verbinding
  • (Zelf)onderzoek
  • Nieuws
    • Agenda
    • Laatste nieuws
    • Columnisten
    • Ervaringen
    • Nieuwsbrief
    • Uitzicht
  • Over
    • Wie zijn wij
    • Organisatie
    • Activiteiten
    • Vrijwilligers
    • Vacatures
    • ANBI
    • Amnestie
    • Steun ons
    • Contact
  • Webshop
    • Uitzicht
    • Boeken
    • Bijeenkomsten
    • Overig
U bent hier: Home / Columns / Op zoek naar de optimale calcium-magnesiumbalans

Op zoek naar de optimale calcium-magnesiumbalans

Voor een goede gezondheid is ‘balans’ tussen calcium en magnesium van belang. Bij een overschot aan calcium komt de functie van magnesium in gevaar met hoge bloeddruk, hartproblemen, spierzwakte, depressie en breekbare botten tot gevolg.

Frits Muskiet – 2 oktober 2025
Op zoek naar de optimale calcium-magnesiumbalans 3

Calcium en magnesium zijn als yin en yang. Zij hebben veel tegengestelde functies, maar kunnen ook niet zonder elkaar. Calcium veroorzaakt actie, terwijl magnesium rust brengt. Calcium doet de spiercellen aanspannen, magnesium laat ze ontspannen. Calcium bevordert ontsteking, magnesium is ontstekingsremmend. Calcium bevordert de stolling, terwijl magnesium de bloeddoorstroming stimuleert. Ze werken ook samen: magnesium is bijvoorbeeld nodig voor het maken van het vitamine D-hormoon en dat verhoogt de opname van calcium in het maag-darmkanaal.

In de cel zit ongeveer twee tot drie keer meer magnesium dan buiten de cel, terwijl de calciumgehaltes in een cel ongeveer 25.000 keer lager zijn dan erbuiten. Het lichaam investeert gigantisch veel energie om deze onevenredige verdeling in stand te houden en doet dat niet voor de lol. Calcium en magnesium vormen beide belangrijke onderdelen van ons botmineraal. Bot bevat 99 procent van het lichaamscalcium en 60 procent van het lichaamsmagnesium. Bij een massale calciuminstroom gaat een cel dood. Voldoende magnesium als tegenhanger voorkomt dat calcium naar binnen sluipt.

Melk-calcium is bedoeld voor het snel groeiend bot van zuigelingen

Momenteel bedraagt de aanbevolen dagelijkse hoeveelheid (ADH) voor calcium 950 tot 1.000 mg (mannen en vrouwen). De adequate inname (AI) van magnesium is 300 mg (vrouwen) en 350 mg (mannen). De bijbehorende Ca/Mg-ratio (de calcium-ADH gedeeld door de magnesium-AI) is dan 2,7 tot 3,3 gram/gram. Het is echter zeer onwaarschijnlijk dat dit de optimale verhouding is! In Nederland bedraagt de gemiddelde dagelijkse inname 998 mg calcium en 349 mg magnesium. Dat komt neer op een Ca/Mg-ratio van 2,90 (mannen) en 3,25 (vrouwen). Traditioneel levende bevolkingen (India, China, Bedoeïen) hebben met 0,5 – 0,9 een veel lagere Ca/Mg-ratio in hun voeding. In modern Japan en China is de verhouding 1,5 – 1,9. Hoe was de verhouding vóór de landbouwrevolutie – ongeveer 10.000 jaar geleden – toen we nog als jagers-verzamelaars leefden? Wetenschappers becijferden een geschatte inname van 1.622 mg calcium en 1.223 mg magnesium. Dus een ratio van 1,33.

De Ca/Mg-verhouding in westerse voeding steeg dus flink in de loop der jaren. Dat komt door hoge consumptie van zuivel(producten), het gebruik van calciumsupplementen en met calcium verrijkte voeding. Terwijl de inname van magnesium daalde door het toegenomen gebruik van (ultra)bewerkte voeding en veranderde gewassen. Om osteoporose tegen te gaan, lag de nadruk op consumptie van calcium via melk en supplementen. Of dat handig was? Tot 10.000 jaar geleden consumeerden volwassenen geen zuivel. Melk-calcium is bedoeld voor zuigelingen: nodig voor hun snel groeiend bot. Dat verklaart de zeer hoge Ca/Mg-ratio van zuivel: 12 gram/gram.

Calciumsupplementen veroorzaken waarschijnlijk meer hartinfarcten en beroertes bij senioren. Reeds lang is bekend dat de meeste osteoporose en heupfracturen voorkomen in landen waar de melkconsumptie (en dus de calciuminname) het hoogst is. Volwassenen die veel zuivel of calciumsupplementen gebruiken, doen er goed aan dit te compenseren met een magnesiumrijke voeding.

Een optimale inname lijkt 800 mg calcium en 400 mg magnesium per dag: dus een Ca/Mg-ratio van ongeveer 2. Magnesium zit in bonen, noten, zaden, volle granen, groene bladgroenten en voeding uit de zee (zeewier, vis en schaaldieren, sardines, oesters, mosselen). Magnesium uit granen wordt slecht opgenomen. Granen worden door de mensheid – net als zuivel – pas sinds 10.000 jaar gegeten. Met de verandering van onze voedingsgewoontes, waarmee toen een start is gemaakt, verdween de natuurlijke samenhang. Dat geldt niet alleen voor magnesium en calcium, maar ook voor de verhoudingen tussen natrium en kalium, vitamine D en vitamine K2, de zuur-base balans, en veel meer.

Beeld: OpenAI

Literatuur

Element (Mg, Ca) composition of seawater and soil

1.             Earth’s Crust: Elements, Minerals and Rocks, accessed 5 May 2023

Earth’s Crust: Elements, Minerals and Rocks

2.             Griffin, D. W., Silvestri, E. E., Bowling, C. Y., Boe, T., Smith, D. B., & Nichols, T. L. (2014). Anthrax and the geochemistry of soils in the contiguous United States. Geosciences, 4(3), 114-127.

https://www.mdpi.com/2076-3263/4/3/114

3.             Geochemical and Mineralogical Maps, with Interpretation, for Soils of the Conterminous United States accessed 05 may 2023

https://pubs.usgs.gov/sir/2017/5118/sir20175118_element.php?el=12

4.             Bergman, J. (2010). Is the Sodium Chloride Level in the Oceans Evidence for Abiogenesis?. Answers Res. J, 3, 159-164.

https://citeseerx.ist.psu.edu/document?repid=rep1&type=pdf&doi=a0de0632585a96644afbc981511bbc1d3db72782

Evolution

5.             Mulkidjanian AY, Bychkov AY, Dibrova DV, Galperin MY, Koonin EV. Open questions on the origin of life at anoxic geothermal fields. Orig Life Evol Biosph. 2012 Oct;42(5):507-16. doi: 10.1007/s11084-012-9315-0. Epub 2012 Nov 7. PMID: 23132762; PMCID: PMC3997052.

https://pubmed.ncbi.nlm.nih.gov/23132762

6.             Mulkidjanian AY, Bychkov AY, Dibrova DV, Galperin MY, Koonin EV. Origin of first cells at terrestrial, anoxic geothermal fields. Proc Natl Acad Sci U S A. 2012 Apr 3;109(14):E821-30. doi: 10.1073/pnas.1117774109. Epub 2012 Feb 13. PMID: 22331915; PMCID: PMC3325685.

https://pubmed.ncbi.nlm.nih.gov/22331915

7.             Evolution: Out Of The Sea, By Christie Wilcox on 28 juli 2012, accessed 5 May 2023

https://blogs.scientificamerican.com/science-sushi/evolution-out-of-the-sea

8.             Keogh L, Kilroy D, Bhattacharjee S. The struggle to equilibrate outer and inner milieus: Renal evolution revisited. Ann Anat. 2021 Jan;233:151610. doi: 10.1016/j.aanat.2020.151610. Epub 2020 Oct 13. PMID: 33065247.

https://pubmed.ncbi.nlm.nih.gov/33065247

9.             Nielsen, F. Evolutionary events culminating in specific minerals becoming essential for life. Eur J Nutr 39, 62–66 (2000).

https://doi.org/10.1007/s003940050003

10.           Kawarazaki W, Fujita T. Aberrant Rac1-mineralocorticoid receptor pathways in salt-sensitive hypertension. Clin Exp Pharmacol Physiol. 2013 Dec;40(12):929-36. doi: 10.1111/1440-1681.12177. PMID: 24111570.

https://pubmed.ncbi.nlm.nih.gov/24111570

11.           Donato V, Lacquaniti A, Cernaro V, Lorenzano G, Trimboli D, Buemi A, Lupica R, Buemi M. From water to aquaretics: a legendary route. Cell Physiol Biochem. 2014;33(5):1369-88. doi: 10.1159/000358704. Epub 2014 May 5. PMID: 24853354.

https://pubmed.ncbi.nlm.nih.gov/24853354

12.           Fournier D, Luft FC, Bader M, Ganten D, Andrade-Navarro MA. Emergence and evolution of the renin-angiotensin-aldosterone system. J Mol Med (Berl). 2012 May;90(5):495-508. doi: 10.1007/s00109-012-0894-z. Epub 2012 Apr 14. PMID: 22527880; PMCID: PMC3354321.

https://pubmed.ncbi.nlm.nih.gov/22527880

13.           Lyons G. Biofortification of Cereals With Foliar Selenium and Iodine Could Reduce Hypothyroidism. Front Plant Sci. 2018 Jun 8;9:730. doi: 10.3389/fpls.2018.00730. PMID: 29951072; PMCID: PMC6008543.

https://pubmed.ncbi.nlm.nih.gov/29951072

14.           Fuge, R. (2012). Soils and iodine deficiency. In Essentials of medical geology: revised edition (pp. 417-432). Dordrecht: Springer Netherlands.

https://link.springer.com/chapter/10.1007/978-94-007-4375-5_17

15.           Kazmierczak, J., Kempe, S., & Kremer, B. (2013). Calcium in the early evolution of living systems: a biohistorical approach. Current Organic Chemistry, 17(16), 1738-1750.

https://www.ingentaconnect.com/content/ben/coc/2013/00000017/00000016/art00008

(Calcium) cell signaling

16.           Clapham DE. Calcium signaling. Cell. 2007 Dec 14;131(6):1047-58. doi: 10.1016/j.cell.2007.11.028. PMID: 18083096.

https://pubmed.ncbi.nlm.nih.gov/18083096

17.           Cai X, Wang X, Patel S, Clapham DE. Insights into the early evolution of animal calcium signaling machinery: a unicellular point of view. Cell Calcium. 2015 Mar;57(3):166-73. doi: 10.1016/j.ceca.2014.11.007. Epub 2014 Dec 2. PMID: 25498309; PMCID: PMC4355082.

https://pubmed.ncbi.nlm.nih.gov/25498309

18.           Lima GA, Lima PD, Barros Mda G, Vardiero LP, Melo EF, Paranhos-Neto Fde P, Madeira M, Farias ML. Calcium intake: good for the bones but bad for the heart? An analysis of clinical studies. Arch Endocrinol Metab. 2016 Jun;60(3):252-63. doi: 10.1590/2359-3997000000173. PMID: 27355855.

https://pubmed.ncbi.nlm.nih.gov/27355855

19.           Touyz RM. Magnesium supplementation as an adjuvant to synthetic calcium channel antagonists in the treatment of hypertension. Med Hypotheses. 1991 Oct;36(2):140-1. doi: 10.1016/0306-9877(91)90256-x. PMID: 1664038.

https://pubmed.ncbi.nlm.nih.gov/1664038/#:~:text=Magnesium%20(Mg2%2B)%20has%20antagonistic,used%20as%20anti%2Dhypertensive%20agents.

Intracellular elements

20.           Schroll, A. (1998). Importance of magnesium for the electrolyte homeostasis–an overview. In Advances in Magnesium Research: Magnesium in Cardiology: Proceedings of the 5th European Congress on Magnesium. London: John Libbey Company (pp. 463-72).

https://scholar.google.nl/scholar?hl=nl&as_sdt=0%2C5&q=Schroll+A.+Importance+of+magnesium+for+the+electrolyte+homeostasis%E2%80%93an+overview.+1998%3B463-72.&btnG=#d=gs_cit&t=1683363895810&u=%2Fscholar%3Fq%3Dinfo%3Ay6dx22Ef0b4J%3Ascholar.google.com%2F%26output%3Dcite%26scirp%3D0%26hl%3Dnl

see also http://www.mgwater.com/schroll.shtml

Cellular pumps

21.           Verkhratsky A, Trebak M, Perocchi F, Khananshvili D, Sekler I. Crosslink between calcium and sodium signalling. Exp Physiol. 2018 Feb 1;103(2):157-169. doi: 10.1113/EP086534. Epub 2018 Jan 16. PMID: 29210126; PMCID: PMC6813793.

https://pubmed.ncbi.nlm.nih.gov/29210126

22.           Murphy E, Eisner DA. Regulation of intracellular and mitochondrial sodium in health and disease. Circ Res. 2009 Feb 13;104(3):292-303. doi: 10.1161/CIRCRESAHA.108.189050. PMID: 19213964; PMCID: PMC2662399.

https://pubmed.ncbi.nlm.nih.gov/19213964

23.           Karppanen H. Minerals and blood pressure. Ann Med. 1991 Aug;23(3):299-305. doi: 10.3109/07853899109148064. PMID: 1930921.

https://pubmed.ncbi.nlm.nih.gov/1930921

24.           Romani AM. Cellular magnesium homeostasis. Arch Biochem Biophys. 2011 Aug 1;512(1):1-23. doi: 10.1016/j.abb.2011.05.010. Epub 2011 May 27. PMID: 21640700; PMCID: PMC3133480.

https://pubmed.ncbi.nlm.nih.gov/21640700

25.           Gagnon KB, Delpire E. Sodium Transporters in Human Health and Disease. Front Physiol. 2021 Feb 25;11:588664. doi: 10.3389/fphys.2020.588664. PMID: 33716756; PMCID: PMC7947867.

https://pubmed.ncbi.nlm.nih.gov/33716756

26.           Li T, Chen J, Zeng Z. Pathophysiological role of calcium channels and transporters in the multiple myeloma. Cell Commun Signal. 2021 Sep 27;19(1):99. doi: 10.1186/s12964-021-00781-4. PMID: 34579758; PMCID: PMC8477534.         

https://pubmed.ncbi.nlm.nih.gov/34579758

26a.         Keogh L, Kilroy D, Bhattacharjee S. The struggle to equilibrate outer and inner milieus: Renal evolution revisited. Ann Anat. 2021 Jan;233:151610. doi: 10.1016/j.aanat.2020.151610. Epub 2020 Oct 13. PMID: 33065247.

https://pubmed.ncbi.nlm.nih.gov/33065247

26b.         Evans RG. Evolution of the glomerulus in a marine environment and its implications for renal function in terrestrial vertebrates. Am J Physiol Regul Integr Comp Physiol. 2023 Feb 1;324(2):R143-R151. doi: 10.1152/ajpregu.00210.2022. Epub 2022 Dec 19. PMID: 36534585.              

https://pubmed.ncbi.nlm.nih.gov/36534585

26c.         Turner N, Haga KL, Hulbert AJ, Else PL. Relationship between body size, Na+-K+-ATPase activity, and membrane lipid composition in mammal and bird kidney. Am J Physiol Regul Integr Comp Physiol. 2005 Jan;288(1):R301-10. doi: 10.1152/ajpregu.00297.2004. Epub 2004 Sep 30. PMID: 15458965.

https://pubmed.ncbi.nlm.nih.gov/15458965

Magnesium reviews

27.           de Baaij JH, Hoenderop JG, Bindels RJ. Magnesium in man: implications for health and disease. Physiol Rev. 2015 Jan;95(1):1-46. doi: 10.1152/physrev.00012.2014. PMID: 25540137.

https://pubmed.ncbi.nlm.nih.gov/25540137

28.           Rosanoff A. Rising Ca:Mg intake ratio from food in USA Adults: a concern? Magnes Res. 2010 Dec;23(4):S181-93. doi: 10.1684/mrh.2010.0221. Epub 2011 Jan 14. PMID: 21233058.

https://pubmed.ncbi.nlm.nih.gov/21233058

29.           Costello RB, Rosanoff A, Dai Q, Saldanha LG, Potischman NA. Perspective: Characterization of Dietary Supplements Containing Calcium and Magnesium and Their Respective Ratio-Is a Rising Ratio a Cause for Concern? Adv Nutr. 2021 Mar 31;12(2):291-297. doi: 10.1093/advances/nmaa160. PMID: 33367519; PMCID: PMC8264923.

https://pubmed.ncbi.nlm.nih.gov/33367519

30.           Rosanoff A. The high heart health value of drinking-water magnesium. Med Hypotheses. 2013 Dec;81(6):1063-5. doi: 10.1016/j.mehy.2013.10.003. PMID: 24436973.

https://pubmed.ncbi.nlm.nih.gov/24436973

31.           Rosanoff A, Dai Q, Shapses SA. Essential Nutrient Interactions: Does Low or Suboptimal Magnesium Status Interact with Vitamin D and/or Calcium Status? Adv Nutr. 2016 Jan 15;7(1):25-43. doi: 10.3945/an.115.008631. PMID: 26773013; PMCID: PMC4717874.

https://pubmed.ncbi.nlm.nih.gov/26773013

32.           Rosanoff A, Costello RB, Johnson GH. Effectively Prescribing Oral Magnesium Therapy for Hypertension: A Categorized Systematic Review of 49 Clinical Trials. Nutrients. 2021 Jan 10;13(1):195. doi: 10.3390/nu13010195. PMID: 33435187; PMCID: PMC7827637.

https://pubmed.ncbi.nlm.nih.gov/33435187

33.           Rosanoff A, West C, Elin RJ, Micke O, Baniasadi S, Barbagallo M, Campbell E, Cheng FC, Costello RB, Gamboa-Gomez C, Guerrero-Romero F, Gletsu-Miller N, von Ehrlich B, Iotti S, Kahe K, Kim DJ, Kisters K, Kolisek M, Kraus A, Maier JA, Maj-Zurawska M, Merolle L, Nechifor M, Pourdowlat G, Shechter M, Song Y, Teoh YP, Touyz RM, Wallace TC, Yokota K, Wolf F; MaGNet Global Magnesium Project (MaGNet). Recommendation on an updated standardization of serum magnesium reference ranges. Eur J Nutr. 2022 Oct;61(7):3697-3706. doi: 10.1007/s00394-022-02916-w. Epub 2022 Jun 10. PMID: 35689124; PMCID: PMC9186275.

https://pubmed.ncbi.nlm.nih.gov/35689124

34.           Rosanoff A, West C, Elin RJ, Micke O, Baniasadi S, Barbagallo M, Campbell E, Cheng FC, Costello RB, Gamboa-Gomez C, Guerrero-Romero F, Gletsu-Miller N, von Ehrlich B, Iotti S, Kahe K, Kim DJ, Kisters K, Kolisek M, Kraus A, Maier JA, Maj-Zurawska M, Merolle L, Nechifor M, Pourdowlat G, Shechter M, Song Y, Teoh YP, Touyz RM, Wallace TC, Yokota K, Wolf F; MaGNet Global Magnesium Project (MaGNet). Recommendation on an updated standardization of serum magnesium reference ranges. Eur J Nutr. 2022 Oct;61(7):3697-3706. doi: 10.1007/s00394-022-02916-w. Epub 2022 Jun 10. PMID: 35689124; PMCID: PMC9186275.

https://pubmed.ncbi.nlm.nih.gov/35689124

35.           Rosanoff A, Weaver CM, Rude RK. Suboptimal magnesium status in the United States: are the health consequences underestimated? Nutr Rev. 2012 Mar;70(3):153-64. doi: 10.1111/j.1753-4887.2011.00465.x. Epub 2012 Feb 15. PMID: 22364157.

https://pubmed.ncbi.nlm.nih.gov/22364157

Magnesium in food

36.           Cazzola R, Della Porta M, Manoni M, Iotti S, Pinotti L, Maier JA. Going to the roots of reduced magnesium dietary intake: A tradeoff between climate changes and sources. Heliyon. 2020 Nov 3;6(11):e05390. doi: 10.1016/j.heliyon.2020.e05390. PMID: 33204877; PMCID: PMC7649274.

https://pubmed.ncbi.nlm.nih.gov/33204877

37.           RIVM. Nederlands Voedingsstoffenbestand (NEVO) – online

https://nevo-online.rivm.nl

38.           U.S. DEPARTMENT OF AGRICULTURE (USDA). National Nutrient Database for Standard Reference 2019

Contents Magnesium (Mg) All Foods, USDA Data Accessed 06 May 2023

https://m.andrafarm.com/_andra.php?_i=daftar-usda&_en=ENGLISH&jobs=&perhal=40&sby=&coltam=14&knama=&asc=0000100000&urut=14#Tabel%20USDA

39.           Rylander R. Magnesium in drinking water – a case for prevention? J Water Health. 2014 Mar;12(1):34-40. doi: 10.2166/wh.2013.110. PMID: 24642430.

39a.         Santos HO, May TL, Bueno AA. Eating more sardines instead of fish oil supplementation: Beyond omega-3 polyunsaturated fatty acids, a matrix of nutrients with cardiovascular benefits. Front Nutr. 2023 Apr 14;10:1107475. doi: 10.3389/fnut.2023.1107475. PMID: 37143475; PMCID: PMC10153001. https://pubmed.ncbi.nlm.nih.gov/37143475/

https://pubmed.ncbi.nlm.nih.gov/24642430

40.           Kožíšek, F. (2003). Health significance of drinking water calcium and magnesium. National Institute of Public Health, 29, 9285-9286.

                http://www.healthy-water.ca/Calcium%20%26%20Magnesium%20in%20Drinking%20Water.pdf

40a.         Azoulay A, Garzon P, Eisenberg MJ. Comparison of the mineral content of tap water and bottled waters. J Gen Intern Med. 2001 Mar;16(3):168-75. doi: 10.1111/j.1525-1497.2001.04189.x. PMID: 11318912; PMCID: PMC1495189.

https://pubmed.ncbi.nlm.nih.gov/11318912

41.           Muskiet, F. A. J. (2015). Eten we teveel zout (natrium)? Een holistische kijk op onze Na-K-Ca-Mg en zuur/base balans. Ned Tijdschr Klin Chem Labgeneesk, 40(3), 164-193.

https://www.nvkc.nl/files/ntkc/N60_049408_BW_NVKC_Juli2015_WQ_01.pdf

41a.         Schuchardt JP, Hahn A. Intestinal Absorption and Factors Influencing Bioavailability of Magnesium-An Update. Curr Nutr Food Sci. 2017 Nov;13(4):260-278. doi: 10.2174/1573401313666170427162740. PMID: 29123461; PMCID: PMC5652077.

https://pubmed.ncbi.nlm.nih.gov/29123461

41b.         Straub DA. Calcium supplementation in clinical practice: a review of forms, doses, and indications. Nutr Clin Pract. 2007 Jun;22(3):286-96. doi: 10.1177/0115426507022003286. PMID: 17507729.

https://pubmed.ncbi.nlm.nih.gov/17507729

42.           van Rossum, C. T., Fransen, H. P., Verkaik-Kloosterman, J., Buurma-Rethans, E. J., & Ocké, M. C. (2011). Dutch National Food Consumption Survey 2007-2010: Diet of children and adults aged 7 to 69 years.

https://www.rivm.nl/bibliotheek/rapporten/350050006.pdf

42a.         Ranade VV, Somberg JC. Bioavailability and pharmacokinetics of magnesium after administration of magnesium salts to humans. Am J Ther. 2001 Sep-Oct;8(5):345-57. doi: 10.1097/00045391-200109000-00008. PMID: 11550076.

https://pubmed.ncbi.nlm.nih.gov/11550076

43.           Sirot V, Dumas C, Leblanc JC, Margaritis I. Food and nutrient intakes of French frequent seafood consumers with regard to fish consumption recommendations: results from the CALIPSO study. Br J Nutr. 2011 May;105(9):1369-80. doi: 10.1017/S0007114510005027. Epub 2010 Dec 16. PMID: 21205369.

https://pubmed.ncbi.nlm.nih.gov/21205369

44.           Cordain L. Cereal grains: humanity’s double-edged sword. World Rev Nutr Diet. 1999;84:19-73. doi: 10.1159/000059677. PMID: 10489816.

https://pubmed.ncbi.nlm.nih.gov/10489816

45.           Bishop, W. M., & Zubeck, H. M. (2012). Evaluation of microalgae for use as nutraceuticals and nutritional supplements. J Nutr Food Sci, 2(5), 1-6.

https://lightlife-vs.com.br/wp-content/uploads/2021/05/Detoksskoon.pdf

45a.         Circuncisão AR, Catarino MD, Cardoso SM, Silva AMS. Minerals from Macroalgae Origin: Health Benefits and Risks for Consumers. Mar Drugs. 2018 Oct 23;16(11):400. doi: 10.3390/md16110400. PMID: 30360515; PMCID: PMC6266857.

https://pubmed.ncbi.nlm.nih.gov/30360515

Magnesium physiology and function

46.           Wu, Joyce, and Andrew Carter. “Magnesium: the forgotten electrolyte.” (2007).

https://www.nps.org.au/australian-prescriber/articles/magnesium-the-forgotten-electrolyte

47.           Barbagallo, M., & Dominguez, L. J. (2010). Magnesium and aging. Current pharmaceutical design, 16(7), 832-839.

https://www.ingentaconnect.com/content/ben/cpd/2010/00000016/00000007/art00011

48.           Workinger JL, Doyle RP, Bortz J. Challenges in the Diagnosis of Magnesium Status. Nutrients. 2018 Sep 1;10(9):1202. doi: 10.3390/nu10091202. PMID: 30200431; PMCID: PMC6163803.

https://pubmed.ncbi.nlm.nih.gov/30200431

49.           Weglicki WB, Phillips TM, Mak IT, Cassidy MM, Dickens BF, Stafford R, Kramer JH. Cytokines, neuropeptides, and reperfusion injury during magnesium deficiency. Ann N Y Acad Sci. 1994 Jun 17;723:246-57. PMID: 7518201.

https://pubmed.ncbi.nlm.nih.gov/7518201

50.           Bede O, Nagy D, Surányi A, Horváth I, Szlávik M, Gyurkovits K. Effects of magnesium supplementation on the glutathione redox system in atopic asthmatic children. Inflamm Res. 2008 Jun;57(6):279-86. doi: 10.1007/s00011-007-7077-3. PMID: 18516713.

https://pubmed.ncbi.nlm.nih.gov/18516713

51.           Iseri LT, French JH. Magnesium: nature’s physiologic calcium blocker. Am Heart J. 1984 Jul;108(1):188-93. doi: 10.1016/0002-8703(84)90572-6. PMID: 6375330. 

https://pubmed.ncbi.nlm.nih.gov/6375330

52.           Ferrè S, Hoenderop JG, Bindels RJ. Sensing mechanisms involved in Ca2+ and Mg2+ homeostasis. Kidney Int. 2012 Dec;82(11):1157-66. doi: 10.1038/ki.2012.179. Epub 2012 May 23. PMID: 22622503.

https://pubmed.ncbi.nlm.nih.gov/22622503

53.           Zaichick S, Zaichick V. The effect of age and gender on 38 chemical element contents in human iliac crest investigated by instrumental neutron activation analysis. J Trace Elem Med Biol. 2010 Jan;24(1):1-6. doi: 10.1016/j.jtemb.2009.07.002. Epub 2009 Aug 21. PMID: 20122572.

https://pubmed.ncbi.nlm.nih.gov/20122572

53a.         Dusso AS, Brown AJ, Slatopolsky E. Vitamin D. Am J Physiol Renal Physiol. 2005 Jul;289(1):F8-28. doi: 10.1152/ajprenal.00336.2004. PMID: 15951480.

https://pubmed.ncbi.nlm.nih.gov/15951480

53b.         Ciosek Ż, Kot K, Kosik-Bogacka D, Łanocha-Arendarczyk N, Rotter I. The Effects of Calcium, Magnesium, Phosphorus, Fluoride, and Lead on Bone Tissue. Biomolecules. 2021 Mar 28;11(4):506. doi: 10.3390/biom11040506. PMID: 33800689; PMCID: PMC8066206.

https://pubmed.ncbi.nlm.nih.gov/33800689

54.           Institute of Medicine (US) Standing Committee on the Scientific Evaluation of Dietary Reference Intakes. Dietary Reference Intakes for Calcium, Phosphorus, Magnesium, Vitamin D, and Fluoride. Washington (DC): National Academies Press (US); 1997. PMID: 23115811.

https://pubmed.ncbi.nlm.nih.gov/23115811

55.           Saris NE, Mervaala E, Karppanen H, Khawaja JA, Lewenstam A. Magnesium. An update on physiological, clinical and analytical aspects. Clin Chim Acta. 2000 Apr;294(1-2):1-26. doi: 10.1016/s0009-8981(99)00258-2. PMID: 10727669.

https://pubmed.ncbi.nlm.nih.gov/10727669

Magnesium and disease

27-35

56.           Barbagallo M, Dominguez LJ. Magnesium metabolism in type 2 diabetes mellitus, metabolic syndrome and insulin resistance. Arch Biochem Biophys. 2007 Feb 1;458(1):40-7. doi: 10.1016/j.abb.2006.05.007. Epub 2006 Jun 12. PMID: 16808892.

https://pubmed.ncbi.nlm.nih.gov/16808892

57.           Barbagallo M, Belvedere M, Dominguez LJ. Magnesium homeostasis and aging. Magnes Res. 2009 Dec;22(4):235-46. doi: 10.1684/mrh.2009.0187. PMID: 20228001.

https://pubmed.ncbi.nlm.nih.gov/20228001

58.           Barbagallo M, Dominguez LJ. Magnesium and aging. Curr Pharm Des. 2010;16(7):832-9. doi: 10.2174/138161210790883679. PMID: 20388094.

https://pubmed.ncbi.nlm.nih.gov/20388094

59.           Jahnen-Dechent W, Ketteler M. Magnesium basics. Clin Kidney J. 2012 Feb;5(Suppl 1):i3-i14. doi: 10.1093/ndtplus/sfr163. PMID: 26069819; PMCID: PMC4455825.

https://pubmed.ncbi.nlm.nih.gov/26069819

60.           Barbagallo M, Dominguez LJ, Galioto A, Pineo A, Belvedere M. Oral magnesium supplementation improves vascular function in elderly diabetic patients. Magnes Res. 2010 Sep;23(3):131-7. doi: 10.1684/mrh.2010.0214. Epub 2010 Aug 24. PMID: 20736142.

https://pubmed.ncbi.nlm.nih.gov/20736142

61.           Del Gobbo LC, Imamura F, Wu JH, de Oliveira Otto MC, Chiuve SE, Mozaffarian D. Circulating and dietary magnesium and risk of cardiovascular disease: a systematic review and meta-analysis of prospective studies. Am J Clin Nutr. 2013 Jul;98(1):160-73. doi: 10.3945/ajcn.112.053132. Epub 2013 May 29. PMID: 23719551; PMCID: PMC3683817.

https://pubmed.ncbi.nlm.nih.gov/23719551

62.           Dibaba DT, Xun P, He K. Dietary magnesium intake is inversely associated with serum C-reactive protein levels: meta-analysis and systematic review. Eur J Clin Nutr. 2014 Apr;68(4):510-6. doi: 10.1038/ejcn.2014.7. Epub 2014 Feb 12. Erratum in: Eur J Clin Nutr. 2015 Mar;69(3):410. PMID: 24518747; PMCID: PMC3975661.

https://pubmed.ncbi.nlm.nih.gov/24518747

63.           Dong JY, Xun P, He K, Qin LQ. Magnesium intake and risk of type 2 diabetes: meta-analysis of prospective cohort studies. Diabetes Care. 2011 Sep;34(9):2116-22. doi: 10.2337/dc11-0518. PMID: 21868780; PMCID: PMC3161260.

https://pubmed.ncbi.nlm.nih.gov/21868780

64.           Glasdam SM, Glasdam S, Peters GH. The Importance of Magnesium in the Human Body: A Systematic Literature Review. Adv Clin Chem. 2016;73:169-93. doi: 10.1016/bs.acc.2015.10.002. Epub 2016 Jan 13. PMID: 26975973.

https://pubmed.ncbi.nlm.nih.gov/26975973

65.           Guerrero-Romero F, Jaquez-Chairez FO, Rodríguez-Morán M. Magnesium in metabolic syndrome: a review based on randomized, double-blind clinical trials. Magnes Res. 2016 Apr 1;29(4):146-153. doi: 10.1684/mrh.2016.0404. PMID: 27834189.

https://pubmed.ncbi.nlm.nih.gov/27834189

66.           Houston M. The role of magnesium in hypertension and cardiovascular disease. J Clin Hypertens (Greenwich). 2011 Nov;13(11):843-7. doi: 10.1111/j.1751-7176.2011.00538.x. Epub 2011 Sep 26. PMID: 22051430; PMCID: PMC8108907.

https://pubmed.ncbi.nlm.nih.gov/22051430

67.           Joosten MM, Gansevoort RT, Mukamal KJ, van der Harst P, Geleijnse JM, Feskens EJ, Navis G, Bakker SJ; PREVEND Study Group. Urinary and plasma magnesium and risk of ischemic heart disease. Am J Clin Nutr. 2013 Jun;97(6):1299-306. doi: 10.3945/ajcn.112.054114. Epub 2013 Mar 13. PMID: 23485414.

https://pubmed.ncbi.nlm.nih.gov/23485414

68.           Joosten MM, Gansevoort RT, Mukamal KJ, Kootstra-Ros JE, Feskens EJ, Geleijnse JM, Navis G, Bakker SJ; PREVEND Study Group. Urinary magnesium excretion and risk of hypertension: the prevention of renal and vascular end-stage disease study. Hypertension. 2013 Jun;61(6):1161-7. doi: 10.1161/HYPERTENSIONAHA.113.01333. Epub 2013 Apr 22. PMID: 23608650.

https://pubmed.ncbi.nlm.nih.gov/23608650

69.           Joshi A, Siva C. Magnesium disorders can cause calcium pyrophosphate deposition disease: A case report and literature review. Eur J Rheumatol. 2018 Mar;5(1):53-57. doi: 10.5152/eurjrheum.2017.16116. Epub 2017 Aug 29. PMID: 29657876; PMCID: PMC5895153.

https://pubmed.ncbi.nlm.nih.gov/29657876

70.           Ju SY, Choi WS, Ock SM, Kim CM, Kim DH. Dietary magnesium intake and metabolic syndrome in the adult population: dose-response meta-analysis and meta-regression. Nutrients. 2014 Dec 22;6(12):6005-19. doi: 10.3390/nu6126005. PMID: 25533010; PMCID: PMC4277012.

https://pubmed.ncbi.nlm.nih.gov/25533010

71.           Karppanen H. Minerals and blood pressure. Ann Med. 1991 Aug;23(3):299-305. doi: 10.3109/07853899109148064. PMID: 1930921.

https://pubmed.ncbi.nlm.nih.gov/1930921

72.           Kolte D, Vijayaraghavan K, Khera S, Sica DA, Frishman WH. Role of magnesium in cardiovascular diseases. Cardiol Rev. 2014 Jul-Aug;22(4):182-92. doi: 10.1097/CRD.0000000000000003. PMID: 24896250.

https://pubmed.ncbi.nlm.nih.gov/24896250

73.           Laires MJ, Monteiro CP, Bicho M. Role of cellular magnesium in health and human disease. Front Biosci. 2004 Jan 1;9:262-76. doi: 10.2741/1223. PMID: 14766364.

https://pubmed.ncbi.nlm.nih.gov/14766364

74.           Laires MJ, Moreira H, Monteiro CP, Sardinha L, Limão F, Veiga L, Gonçalves A, Ferreira A, Bicho M. Magnesium, insulin resistance and body composition in healthy postmenopausal women. J Am Coll Nutr. 2004 Oct;23(5):510S-513S. doi: 10.1080/07315724.2004.10719391. PMID: 15466953.

https://pubmed.ncbi.nlm.nih.gov/15466953

75.           Larsson SC, Orsini N, Wolk A. Dietary magnesium intake and risk of stroke: a meta-analysis of prospective studies. Am J Clin Nutr. 2012 Feb;95(2):362-6. doi: 10.3945/ajcn.111.022376. Epub 2011 Dec 28. PMID: 22205313.

https://pubmed.ncbi.nlm.nih.gov/22205313

76.           Larsson SC, Wolk A. Magnesium intake and risk of type 2 diabetes: a meta-analysis. J Intern Med. 2007 Aug;262(2):208-14. doi: 10.1111/j.1365-2796.2007.01840.x. PMID: 17645588.

https://pubmed.ncbi.nlm.nih.gov/17645588

77.           Ma J, Folsom AR, Melnick SL, Eckfeldt JH, Sharrett AR, Nabulsi AA, Hutchinson RG, Metcalf PA. Associations of serum and dietary magnesium with cardiovascular disease, hypertension, diabetes, insulin, and carotid arterial wall thickness: the ARIC study. Atherosclerosis Risk in Communities Study. J Clin Epidemiol. 1995 Jul;48(7):927-40. doi: 10.1016/0895-4356(94)00200-a. PMID: 7782801.

https://pubmed.ncbi.nlm.nih.gov/7782801

78.           Maier JA. Endothelial cells and magnesium: implications in atherosclerosis. Clin Sci (Lond). 2012 May;122(9):397-407. doi: 10.1042/CS20110506. PMID: 22248353.

https://pubmed.ncbi.nlm.nih.gov/22248353

79.           Mazur A, Maier JA, Rock E, Gueux E, Nowacki W, Rayssiguier Y. Magnesium and the inflammatory response: potential physiopathological implications. Arch Biochem Biophys. 2007 Feb 1;458(1):48-56. doi: 10.1016/j.abb.2006.03.031. Epub 2006 Apr 19. PMID: 16712775.

https://pubmed.ncbi.nlm.nih.gov/16712775

80.           Wolf FI, Maier JA, Nasulewicz A, Feillet-Coudray C, Simonacci M, Mazur A, Cittadini A. Magnesium and neoplasia: from carcinogenesis to tumor growth and progression or treatment. Arch Biochem Biophys. 2007 Feb 1;458(1):24-32. doi: 10.1016/j.abb.2006.02.016. Epub 2006 Mar 9. PMID: 16564020.

https://pubmed.ncbi.nlm.nih.gov/16564020

81.           Nielsen FH. Magnesium, inflammation, and obesity in chronic disease. Nutr Rev. 2010 Jun;68(6):333-40. doi: 10.1111/j.1753-4887.2010.00293.x. PMID: 20536778.

https://pubmed.ncbi.nlm.nih.gov/20536778

82.           Phelan D, Molero P, Martínez-González MA, Molendijk M. Magnesium and mood disorders: systematic review and meta-analysis. BJPsych Open. 2018 Jul;4(4):167-179. doi: 10.1192/bjo.2018.22. PMID: 29897029; PMCID: PMC6034436.

https://pubmed.ncbi.nlm.nih.gov/29897029

83.           Randell EW, Mathews M, Gadag V, Zhang H, Sun G. Relationship between serum magnesium values, lipids and anthropometric risk factors. Atherosclerosis. 2008 Jan;196(1):413-419. doi: 10.1016/j.atherosclerosis.2006.11.024. Epub 2006 Dec 8. PMID: 17161404.

https://pubmed.ncbi.nlm.nih.gov/17161404

84.           Reinhart RA. Magnesium metabolism. A review with special reference to the relationship between intracellular content and serum levels. Arch Intern Med. 1988 Nov;148(11):2415-20. doi: 10.1001/archinte.148.11.2415. PMID: 3056314.

https://pubmed.ncbi.nlm.nih.gov/3056314

85.           Reinhart RA. Magnesium deficiency: recognition and treatment in the emergency medicine setting. Am J Emerg Med. 1992 Jan;10(1):78-83. doi: 10.1016/0735-6757(92)90133-i. PMID: 1736922.

https://pubmed.ncbi.nlm.nih.gov/1736922

86.           Steck SE, Omofuma OO, Su LJ, Maise AA, Woloszynska-Read A, Johnson CS, Zhang H, Bensen JT, Fontham ETH, Mohler JL, Arab L. Calcium, magnesium, and whole-milk intakes and high-aggressive prostate cancer in the North Carolina-Louisiana Prostate Cancer Project (PCaP). Am J Clin Nutr. 2018 May 1;107(5):799-807. doi: 10.1093/ajcn/nqy037. PMID: 29722851.

https://pubmed.ncbi.nlm.nih.gov/29722851

87.           Volpe SL. Magnesium in disease prevention and overall health. Adv Nutr. 2013 May 1;4(3):378S-83S. doi: 10.3945/an.112.003483. PMID: 23674807; PMCID: PMC3650510.

https://pubmed.ncbi.nlm.nih.gov/23674807

88.           Wang J, Um P, Dickerman BA, Liu J. Zinc, Magnesium, Selenium and Depression: A Review of the Evidence, Potential Mechanisms and Implications. Nutrients. 2018 May 9;10(5):584. doi: 10.3390/nu10050584. PMID: 29747386; PMCID: PMC5986464.

https://pubmed.ncbi.nlm.nih.gov/29747386

Magnesium and bone/osteoporosis

89.           Groenendijk I, van Delft M, Versloot P, van Loon LJC, de Groot LCPGM. Impact of magnesium on bone health in older adults: A systematic review and meta-analysis. Bone. 2022 Jan;154:116233. doi: 10.1016/j.bone.2021.116233. Epub 2021 Oct 16. PMID: 34666201.     

https://pubmed.ncbi.nlm.nih.gov/34666201

90.           Rondanelli M, Faliva MA, Tartara A, Gasparri C, Perna S, Infantino V, Riva A, Petrangolini G, Peroni G. An update on magnesium and bone health. Biometals. 2021 Aug;34(4):715-736. doi: 10.1007/s10534-021-00305-0. Epub 2021 May 6. PMID: 33959846; PMCID: PMC8313472.

https://pubmed.ncbi.nlm.nih.gov/33959846

91.           Castiglioni S, Cazzaniga A, Albisetti W, Maier JA. Magnesium and osteoporosis: current state of knowledge and future research directions. Nutrients. 2013 Jul 31;5(8):3022-33. doi: 10.3390/nu5083022. PMID: 23912329; PMCID: PMC3775240.

https://pubmed.ncbi.nlm.nih.gov/23912329

92.           He B, Xia L, Zhao J, Yin L, Zhang M, Quan Z, Ou Y, Huang W. Causal Effect of Serum Magnesium on Osteoporosis and Cardiometabolic Diseases. Front Nutr. 2021 Dec 3;8:738000. doi: 10.3389/fnut.2021.738000. PMID: 34926542; PMCID: PMC8681341.

https://pubmed.ncbi.nlm.nih.gov/34926542

93.           Rude RK, Gruber HE. Magnesium deficiency and osteoporosis: animal and human observations. J Nutr Biochem. 2004 Dec;15(12):710-6. doi: 10.1016/j.jnutbio.2004.08.001. PMID: 15607643.

https://pubmed.ncbi.nlm.nih.gov/15607643

94.           Zhang J, Tang L, Qi H, Zhao Q, Liu Y, Zhang Y. Dual Function of Magnesium in Bone Biomineralization. Adv Healthc Mater. 2019 Nov;8(21):e1901030. doi: 10.1002/adhm.201901030. Epub 2019 Oct 4. PMID: 31583846.

https://pubmed.ncbi.nlm.nih.gov/31583846

95.           Dominguez LJ, Veronese N, Ciriminna S, Pérez-Albela JL, Vásquez-López VF, Rodas-Regalado S, Di Bella G, Parisi A, Tagliaferri F, Barbagallo M. Association between Serum Magnesium and Fractures: A Systematic Review and Meta-Analysis of Observational Studies. Nutrients. 2023 Mar 7;15(6):1304. doi: 10.3390/nu15061304. PMID: 36986033; PMCID: PMC10053795.

https://pubmed.ncbi.nlm.nih.gov/36986033

96.           He B, Xia L, Zhao J, Yin L, Zhang M, Quan Z, Ou Y, Huang W. Causal Effect of Serum Magnesium on Osteoporosis and Cardiometabolic Diseases. Front Nutr. 2021 Dec 3;8:738000. doi: 10.3389/fnut.2021.738000. PMID: 34926542; PMCID: PMC8681341.

https://pubmed.ncbi.nlm.nih.gov/34926542

97.           Costello RB, Elin RJ, Rosanoff A, Wallace TC, Guerrero-Romero F, Hruby A, Lutsey PL, Nielsen FH, Rodriguez-Moran M, Song Y, Van Horn LV. Perspective: The Case for an Evidence-Based Reference Interval for Serum Magnesium: The Time Has Come. Adv Nutr. 2016 Nov 15;7(6):977-993. doi: 10.3945/an.116.012765. PMID: 28140318; PMCID: PMC5105038.

https://pubmed.ncbi.nlm.nih.gov/28140318

98.           Groenendijk I, van Delft M, Versloot P, van Loon LJC, de Groot LCPGM. Impact of magnesium on bone health in older adults: A systematic review and meta-analysis. Bone. 2022 Jan;154:116233. doi: 10.1016/j.bone.2021.116233. Epub 2021 Oct 16. PMID: 34666201.

https://pubmed.ncbi.nlm.nih.gov/34666201

99.           Rondanelli M, Faliva MA, Tartara A, Gasparri C, Perna S, Infantino V, Riva A, Petrangolini G, Peroni G. An update on magnesium and bone health. Biometals. 2021 Aug;34(4):715-736. doi: 10.1007/s10534-021-00305-0. Epub 2021 May 6. PMID: 33959846; PMCID: PMC8313472.

https://pubmed.ncbi.nlm.nih.gov/33959846

100.         Zhang J, Tang L, Qi H, Zhao Q, Liu Y, Zhang Y. Dual Function of Magnesium in Bone Biomineralization. Adv Healthc Mater. 2019 Nov;8(21):e1901030. doi: 10.1002/adhm.201901030. Epub 2019 Oct 4. PMID: 31583846.

https://pubmed.ncbi.nlm.nih.gov/31583846

101.         Rude RK, Gruber HE. Magnesium deficiency and osteoporosis: animal and human observations. J Nutr Biochem. 2004 Dec;15(12):710-6. doi: 10.1016/j.jnutbio.2004.08.001. PMID: 15607643.

https://pubmed.ncbi.nlm.nih.gov/15607643

Magnesium toxicity

102.         Bergman, J. (2010). Is the Sodium Chloride Level in the Oceans Evidence for Abiogenesis?. Answers Res. J, 3, 159-164.

https://citeseerx.ist.psu.edu/document?repid=rep1&type=pdf&doi=a0de0632585a96644afbc981511bbc1d3db72782

103.         Grimes DA, Nanda K. Magnesium sulfate tocolysis: time to quit. Obstet Gynecol. 2006 Oct;108(4):986-9. doi: 10.1097/01.AOG.0000236445.18265.93. PMID: 17012463.

https://pubmed.ncbi.nlm.nih.gov/17012463

104.         James, M. F. M. (2010). Magnesium in obstetrics. Best Practice & Research Clinical Obstetrics & Gynaecology, 24(3), 327-337.

https://scholar.google.nl/scholar?hl=nl&as_sdt=0%2C5&q=James+Best+Pract+Res+Clin+Obstet+Gynecology+2010&btnG=#d=gs_cit&t=1683881909352&u=%2Fscholar%3Fq%3Dinfo%3AvgwUgXU5MT0J%3Ascholar.google.com%2F%26output%3Dcite%26scirp%3D0%26hl%3Dnl

105.         Houston M. The role of magnesium in hypertension and cardiovascular disease. J Clin Hypertens (Greenwich). 2011 Nov;13(11):843-7. doi: 10.1111/j.1751-7176.2011.00538.x. Epub 2011 Sep 26. PMID: 22051430; PMCID: PMC8108907.

https://pubmed.ncbi.nlm.nih.gov/22051430

106.         Ajib FA, Childress JM. Magnesium Toxicity. 2022 Nov 7. In: StatPearls [Internet]. Treasure Island (FL): StatPearls Publishing; 2023 Jan–. PMID: 32119480.

https://pubmed.ncbi.nlm.nih.gov/32119480

107.         Wu, J., & Carter, A. (2007). Magnesium: the forgotten electrolyte.

https://www.nps.org.au/australian-prescriber/articles/magnesium-the-forgotten-electrolyte

Magnesium status

108.         Institute of Medicine (US) Standing Committee on the Scientific Evaluation of Dietary Reference Intakes. Dietary Reference Intakes for Calcium, Phosphorus, Magnesium, Vitamin D, and Fluoride. Washington (DC): National Academies Press (US); 1997. PMID: 23115811.

https://pubmed.ncbi.nlm.nih.gov/23115811

109.         Elin RJ. Assessment of magnesium status for diagnosis and therapy. Magnes Res. 2010 Dec;23(4):S194-8. doi: 10.1684/mrh.2010.0213. Epub 2010 Aug 24. PMID: 20736141.

https://pubmed.ncbi.nlm.nih.gov/20736141

110.         Nielsen FH. Guidance for the determination of status indicators and dietary requirements for magnesium. Magnes Res. 2016 Apr 1;29(4):154-160. doi: 10.1684/mrh.2016.0416. PMID: 28132953.

https://pubmed.ncbi.nlm.nih.gov/28132953

Magnesium dietary reference intakes

108.         Institute of Medicine (US) Standing Committee on the Scientific Evaluation of Dietary Reference Intakes. Dietary Reference Intakes for Calcium, Phosphorus, Magnesium, Vitamin D, and Fluoride. Washington (DC): National Academies Press (US); 1997. PMID: 23115811.

https://pubmed.ncbi.nlm.nih.gov/23115811

111.         EFSA Panel on Dietetic Products, Nutrition and Allergies (NDA). (2015). Scientific opinion on dietary reference values for magnesium. EFSA Journal, 13(7), 4186.

https://efsa.onlinelibrary.wiley.com/doi/abs/10.2903/j.efsa.2015.4186#

112.         Kodama N, Nishimuta M, Suzuki K. Negative balance of calcium and magnesium under relatively low sodium intake in humans. J Nutr Sci Vitaminol (Tokyo). 2003 Jun;49(3):201-9. doi: 10.3177/jnsv.49.201. PMID: 12953799.

https://pubmed.ncbi.nlm.nih.gov/12953799

113.         Nishimuta M, Kodama N, Shimada M, Yoshitake Y, Matsuzaki N, Morikuni E. Estimated equilibrated dietary intakes for nine minerals (Na, K, Ca, Mg, P, Fe, Zn, Cu, and Mn) adjusted by mineral balance medians in young Japanese females. J Nutr Sci Vitaminol (Tokyo). 2012;58(2):118-28. doi: 10.3177/jnsv.58.118. Erratum in: J Nutr Sci Vitaminol (Tokyo). 2012;58(3):221. PMID: 22790570.

https://pubmed.ncbi.nlm.nih.gov/22790570

114.         Elin RJ. Assessment of magnesium status for diagnosis and therapy. Magnes Res. 2010 Dec;23(4):S194-8. doi: 10.1684/mrh.2010.0213. Epub 2010 Aug 24. PMID: 20736141.

https://pubmed.ncbi.nlm.nih.gov/20736141

Magnesium homeostatic model

115.         Green J, Kleeman CR. Role of bone in regulation of systemic acid-base balance. Kidney Int. 1991 Jan;39(1):9-26. doi: 10.1038/ki.1991.2. PMID: 1706001.

https://pubmed.ncbi.nlm.nih.gov/1706001

116.         Barzel US. The skeleton as an ion exchange system: implications for the role of acid-base imbalance in the genesis of osteoporosis. J Bone Miner Res. 1995 Oct;10(10):1431-6. doi: 10.1002/jbmr.5650101002. PMID: 8686497.

https://pubmed.ncbi.nlm.nih.gov/8686497

117.         Saris NE, Mervaala E, Karppanen H, Khawaja JA, Lewenstam A. Magnesium. An update on physiological, clinical and analytical aspects. Clin Chim Acta. 2000 Apr;294(1-2):1-26. doi: 10.1016/s0009-8981(99)00258-2. PMID: 10727669.

https://pubmed.ncbi.nlm.nih.gov/10727669

118.         Slills ME et al. Modern Nutrition in Health and Disease 9th Ed PDF, Chapter 9 Magnesium, 1998

119.         Spencer H, Fuller H, Norris C, Williams D. Effect of magnesium on the intestinal absorption of calcium in man. J Am Coll Nutr. 1994 Oct;13(5):485-92. doi: 10.1080/07315724.1994.10718439. PMID: 7836628.

https://pubmed.ncbi.nlm.nih.gov/7836628

120.         Resnick LM. Cellular calcium and magnesium metabolism in the pathophysiology and treatment of hypertension and related metabolic disorders. Am J Med. 1992 Aug 31;93(2A):11S-20S. doi: 10.1016/0002-9343(92)90290-r. PMID: 1387762.

https://pubmed.ncbi.nlm.nih.gov/1387762

Current and Paleolithic calcium and magnesium intakes

121.         Eaton SB, Eaton SB 3rd. Paleolithic vs. modern diets–selected pathophysiological implications. Eur J Nutr. 2000 Apr;39(2):67-70. doi: 10.1007/s003940070032. PMID: 10918987.

https://pubmed.ncbi.nlm.nih.gov/10918987

122.         Cordain, L. (2002). The nutritional characteristics of a contemporary diet based upon Paleolithic food groups. J Am Neutraceutical Assoc, 5(3), 15-24.

https://www.semanticscholar.org/paper/The-Nutritional-Characteristics-of-a-Contemporary-Cordain/c4198c9aba65c643a2f8f01e72896bd8379a7f47

123.         RIVM, Dutch National Food Consumption Survey (DNFCS) 2012-2016: Usual intake of nutrients from foods and supplements, Gewijzigd op: 28 februari 2020

https://statline.rivm.nl/#/RIVM/nl/dataset/50074NED/table?ts=1583229955608

Evidence based medicine

124.         Cohen AM, Hersh WR. Criticisms of evidence-based medicine. Evid Based Cardiovasc Med. 2004 Sep;8(3):197-8. doi: 10.1016/j.ebcm.2004.06.036. PMID: 16379931.

https://pubmed.ncbi.nlm.nih.gov/16379931

125.         Tonelli MR. Integrating evidence into clinical practice: an alternative to evidence-based approaches. J Eval Clin Pract. 2006 Jun;12(3):248-56. doi: 10.1111/j.1365-2753.2004.00551.x. PMID: 16722902.

https://pubmed.ncbi.nlm.nih.gov/16722902

126.         Martini, C. What “Evidence” in Evidence-Based Medicine?. Topoi 40, 299–305 (2021). https://doi.org/10.1007/s11245-020-09703-4

https://link.springer.com/article/10.1007/s11245-020-09703-4

127.         Fernandez A, Sturmberg J, Lukersmith S, Madden R, Torkfar G, Colagiuri R, Salvador-Carulla L. Evidence-based medicine: is it a bridge too far? Health Res Policy Syst. 2015 Nov 6;13:66. doi: 10.1186/s12961-015-0057-0. PMID: 26546273; PMCID: PMC4636779.

https://pubmed.ncbi.nlm.nih.gov/26546273

128.         Tebala GD. The Emperor’s New Clothes: a Critical Appraisal of Evidence-based Medicine. Int J Med Sci. 2018 Sep 7;15(12):1397-1405. doi: 10.7150/ijms.25869. PMID: 30275768; PMCID: PMC6158662.

https://pubmed.ncbi.nlm.nih.gov/30275768

129.         Sackett DL, Rosenberg WM, Gray JA, Haynes RB, Richardson WS. Evidence based medicine: what it is and what it isn’t. BMJ. 1996 Jan 13;312(7023):71-2. doi: 10.1136/bmj.312.7023.71. PMID: 8555924; PMCID: PMC2349778.

https://pubmed.ncbi.nlm.nih.gov/8555924

Evolution, land-water ecosystem

130.         Cunnane, S., & Stewart, K. (Eds.). (2010). Human brain evolution: the influence of freshwater and marine food resources. John Wiley & Sons.

https://books.google.nl/books?hl=nl&lr=&id=Jjq8DwAAQBAJ&oi=fnd&pg=PR7&dq=Cunnane,+S.%3B+Stewart,+K.+(Eds.)+Human+Brain+Evolution:+The+Influence+of+Freshwater+and+Marine+Food+Resources,+1st+ed.%3B+Wiley-+Blackwell:+Hoboken,+NJ,+USA,+2010%3B+ISBN+978-0-470-45268-4.&ots=OSAcGdwd1e&sig=NBzXzbe0GdgdnTnsFn5CD068XQI#v=onepage&q&f=false

131.         Broadhurst CL, Cunnane SC, Crawford MA. Rift Valley lake fish and shellfish provided brain-specific nutrition for early Homo. Br J Nutr. 1998 Jan;79(1):3-21. doi: 10.1079/bjn19980004. PMID: 9505798.

https://pubmed.ncbi.nlm.nih.gov/9505798

132.         Kyriacou, K.; Blackhurst, D.M.; Parkington, J.E.; Marais, A.D. Marine and terrestrial foods as a source of brain-selective nutrients for early modern humans in the southwestern Cape, South Africa. J. Hum. Evol. 2016, 97, 86–96.    

https://pubmed.ncbi.nlm.nih.gov/27457547

133.         Cunnane, S. C. (2005). Survival of the fattest: the key to human brain evolution.

https://books.google.nl/books?hl=nl&lr=&id=_MFgDQAAQBAJ&oi=fnd&pg=PR7&dq=Cunnane,+S.C.+(Ed.)+.+Survival+of+the+Fattest:+The+Key+to+Human+Brain+Evolution%3B+World+Scientific+Publishing:+Singapore,+2005%3B+ISBN+981-256-191-9.&ots=wn6By89aBy&sig=Rxu5rruw2XoGtosBJOW5qF_UKNI#v=onepage&q&f=false

134.         Muskiet, F. A., & Kuipers, R. S. (2010). Lessons from shore‐based hunter‐gatherer diets in East Africa. Human brain evolution: The influence of freshwater and marine food resources, 77-104.

https://onlinelibrary.wiley.com/doi/abs/10.1002/9780470609880.ch5

135.         Cunnane SC, Crawford MA. Survival of the fattest: fat babies were the key to evolution of the large human brain. Comp Biochem Physiol A Mol Integr Physiol. 2003 Sep;136(1):17-26. doi: 10.1016/s1095-6433(03)00048-5. PMID: 14527626.

https://pubmed.ncbi.nlm.nih.gov/14527626

136.         Cordain L, Eaton SB, Sebastian A, Mann N, Lindeberg S, Watkins BA, O’Keefe JH, Brand-Miller J. Origins and evolution of the Western diet: health implications for the 21st century. Am J Clin Nutr. 2005 Feb;81(2):341-54. doi: 10.1093/ajcn.81.2.341. PMID: 15699220.

https://pubmed.ncbi.nlm.nih.gov/15699220

137.         Kuipers RS, Luxwolda MF, Dijck-Brouwer DA, Eaton SB, Crawford MA, Cordain L, Muskiet FA. Estimated macronutrient and fatty acid intakes from an East African Paleolithic diet. Br J Nutr. 2010 Dec;104(11):1666-87. doi: 10.1017/S0007114510002679. Epub 2010 Sep 23. PMID: 20860883.

https://pubmed.ncbi.nlm.nih.gov/20860883

138.         Kuipers RS, Luxwolda MF, Dijck-Brouwer DA, Muskiet FA. Fatty acid compositions of preterm and term colostrum, transitional and mature milks in a sub-Saharan population with high fish intakes. Prostaglandins Leukot Essent Fatty Acids. 2012 Apr;86(4-5):201-7. doi: 10.1016/j.plefa.2012.02.006. Epub 2012 Mar 15. PMID: 22425684.

https://pubmed.ncbi.nlm.nih.gov/22425684

139.         Crawford MA, Bloom M, Cunnane S, Holmsen H, Ghebremeskel K, Parkington J, Schmidt W, Sinclair AJ, Broadhurst CL. Docosahexaenoic acid and cerebral evolution. World Rev Nutr Diet. 2001;88:6-17. doi: 10.1159/000059743. PMID: 11935972.

https://pubmed.ncbi.nlm.nih.gov/11935972

140.         Crawford MA, Bloom M, Broadhurst CL, Schmidt WF, Cunnane SC, Galli C, Gehbremeskel K, Linseisen F, Lloyd-Smith J, Parkington J. Evidence for the unique function of docosahexaenoic acid during the evolution of the modern hominid brain. Lipids. 1999;34 Suppl:S39-47. doi: 10.1007/BF02562227. PMID: 10419087.

https://pubmed.ncbi.nlm.nih.gov/10419087

141.         Broadhurst CL, Wang Y, Crawford MA, Cunnane SC, Parkington JE, Schmidt WF. Brain-specific lipids from marine, lacustrine, or terrestrial food resources: potential impact on early African Homo sapiens. Comp Biochem Physiol B Biochem Mol Biol. 2002 Apr;131(4):653-73. doi: 10.1016/s1096-4959(02)00002-7. PMID: 11923081.

https://pubmed.ncbi.nlm.nih.gov/11923081

142.         WoldeGabriel G, Ambrose SH, Barboni D, Bonnefille R, Bremond L, Currie B, DeGusta D, Hart WK, Murray AM, Renne PR, Jolly-Saad MC, Stewart KM, White TD. The geological, isotopic, botanical, invertebrate, and lower vertebrate surroundings of Ardipithecus ramidus. Science. 2009 Oct 2;326(5949):65e1-5. doi: 10.1126/science.1175817. PMID: 19810191.

https://pubmed.ncbi.nlm.nih.gov/19810191

143.         Will, M., Kandel, A. W., & Conard, N. J. (2019). Midden or molehill: The role of coastal adaptations in human evolution and dispersal. Journal of World Prehistory, 32, 33-72.

https://link.springer.com/article/10.1007/s10963-018-09127-4

144.         Marean CW, Bar-Matthews M, Bernatchez J, Fisher E, Goldberg P, Herries AI, Jacobs Z, Jerardino A, Karkanas P, Minichillo T, Nilssen PJ, Thompson E, Watts I, Williams HM. Early human use of marine resources and pigment in South Africa during the Middle Pleistocene. Nature. 2007 Oct 18;449(7164):905-8. doi: 10.1038/nature06204. PMID: 17943129.

https://pubmed.ncbi.nlm.nih.gov/17943129

145.         Smith EI, Jacobs Z, Johnsen R, Ren M, Fisher EC, Oestmo S, Wilkins J, Harris JA, Karkanas P, Fitch S, Ciravolo A, Keenan D, Cleghorn N, Lane CS, Matthews T, Marean CW. Humans thrived in South Africa through the Toba eruption about 74,000 years ago. Nature. 2018 Mar 22;555(7697):511-515. doi: 10.1038/nature25967. Epub 2018 Mar 12. PMID: 29531318.

https://pubmed.ncbi.nlm.nih.gov/29531318

146.         Marean, C. Humanity Thrived in Africa after the Eruption of a Supervolcano 74,000 Years Ago that Plunged Parts of Earth into a Decade-Long Winter.

https://www.dailymail.co.uk/sciencetech/article-5483389/How-humans-survived-eruption-apocalyptic-SUPERVOLCANO.html

147.         Stringer C. Palaeoanthropology. Coasting out of Africa. Nature. 2000 May 4;405(6782):24-5, 27. doi: 10.1038/35011166. Erratum in: Nature 2000 May 11;405(6783):138. PMID: 10811201.

https://pubmed.ncbi.nlm.nih.gov/10811201

148.         Kuipers RS, Joordens JC, Muskiet FA. A multidisciplinary reconstruction of Palaeolithic nutrition that holds promise for the prevention and treatment of diseases of civilisation. Nutr Res Rev. 2012 Jun;25(1):96-129. doi: 10.1017/S0954422412000017. PMID: 22894943.

https://pubmed.ncbi.nlm.nih.gov/22894943

149.         Talling J, Talling IB. The chemical composition of African lake waters. Internationale Revue der gesamten Hydrobiologie und Hydrographie 1965;50:421-63.

https://onlinelibrary.wiley.com/doi/abs/10.1002/iroh.19650500307

150.         Biggs J, Ayele A, Fischer TP, Fontijn K, Hutchison W, Kazimoto E, Whaler K, Wright TJ. Volcanic activity and hazard in the East African Rift Zone. Nat Commun. 2021 Nov 25;12(1):6881. doi: 10.1038/s41467-021-27166-y. PMID: 34824232; PMCID: PMC8616933.

https://pubmed.ncbi.nlm.nih.gov/34824232

151.         Jungers WL. These feet were made for walking. Elife. 2016 Dec 14;5:e22886. doi: 10.7554/eLife.22886. PMID: 27964779; PMCID: PMC5156523.         

https://pubmed.ncbi.nlm.nih.gov/27964779

152.         Philip, J. Y., & Mosha, D. M. S. (2012). Salt Lakes of the African rift system: A valuable research opportunity for insight into nature’s concenrtated multi-electrolyte science. Tanzania Journal of Science, 38(3), 1-13.

https://www.ajol.info/index.php/tjs/article/view/100175

153.         Jager, T. J. (1982). Soils of the Serengeti woodlands, Tanzania. Wageningen University and Research.

https://scholar.google.nl/scholar?hl=nl&as_sdt=0%2C5&q=Soils+of+the+Serengeti+Woodlands+Tanzania+volcanic+ash_Jager+1982&btnG=

154.         Weinstein, P., Horwell, C. J., & Cook, A. (2013). Volcanic emissions and health. Essentials of medical geology: revised edition, 217-238.

https://link.springer.com/chapter/10.1007/978-94-007-4375-5_10

155.         Volcano Watch — Volcanic selenium and sulfur – a delicate balance By Hawaiian Volcano Observatory 27 juli 2007

https://www.usgs.gov/observatories/hvo/news/volcano-watch-volcanic-selenium-and-sulfur-a-delicate-balance

156.         Yuretich, R. F. (1979). Modern sediments and sedimentary processes in Lake Rudolf (Lake Turkana) eastern rift valley, Kenya. Sedimentology, 26(3), 313-331.

https://onlinelibrary.wiley.com/doi/abs/10.1111/j.1365-3091.1979.tb00912.x

157.         Getenet M, García-Ruiz JM, Otálora F, Emmerling F, Al-Sabbagh D, Verdugo-Escamilla C. A Comprehensive Methodology for Monitoring Evaporitic Mineral Precipitation and Hydrochemical Evolution of Saline Lakes: The Case of Lake Magadi Soda Brine (East African Rift Valley, Kenya). Cryst Growth Des. 2022 Apr 6;22(4):2307-2317. doi: 10.1021/acs.cgd.1c01391. Epub 2022 Mar 3. PMID: 35401055; PMCID: PMC8991015.

https://pubmed.ncbi.nlm.nih.gov/35401055

158.         Yuretich, R. F., & Cerling, T. E. (1983). Hydrogeochemistry of Lake Turkana, Kenya: mass balance and mineral reactions in an alkaline lake. Geochimica et Cosmochimica Acta, 47(6), 1099-1109.

https://www.sciencedirect.com/science/article/abs/pii/0016703783902405

Food surveys

159.         Carriquiry AL. Assessing the prevalence of nutrient inadequacy. Public Health Nutr. 1999 Mar;2(1):23-33. doi: 10.1017/s1368980099000038. PMID: 10452728.

https://pubmed.ncbi.nlm.nih.gov/10452728

160.         Dinnissen, C. S., de Jong, M. H., Verkaik-Kloosterman, J., & Hendriksen, M. (2022). Jodiuminname van volwassenen in Noord Nederland in 2020-2021 en trend sinds 2006-2007. Resultaten van voedingsstatusonderzoek in het Lifelines cohort.

https://www.rivm.nl/publicaties/jodiuminname-van-volwassenen-in-noord-nederland-in-2020-2021-en-trend-sinds-2006-2007

161.         Institute of Medicine (US) Subcommittee on Interpretation and Uses of Dietary Reference Intakes; Institute of Medicine (US) Standing Committee on the Scientific Evaluation of Dietary Reference Intakes. DRI Dietary Reference Intakes: Applications in Dietary Assessment. Washington (DC): National Academies Press (US); 2000

https://pubmed.ncbi.nlm.nih.gov/25057725

162.         Trumbo PR, Barr SI, Murphy SP, Yates AA. Dietary reference intakes: cases of appropriate and inappropriate uses. Nutr Rev. 2013 Oct;71(10):657-64. doi: 10.1111/nure.12067. Epub 2013 Oct 3. PMID: 24117790.

https://pubmed.ncbi.nlm.nih.gov/24117790

163.         van Rossum, C. T., Fransen, H. P., Verkaik-Kloosterman, J., Buurma-Rethans, E. J., & Ocké, M. C. (2011). Dutch National Food Consumption Survey 2007-2010: Diet of children and adults aged 7 to 69 years.

https://rivm.openrepository.com/handle/10029/261553

164.         Institute of Medicine (US) Standing Committee on the Scientific Evaluation of Dietary Reference Intakes. Dietary Reference Intakes for Calcium, Phosphorus, Magnesium, Vitamin D, and Fluoride. Washington (DC): National Academies Press (US); 1997. PMID: 23115811.

https://pubmed.ncbi.nlm.nih.gov/23115811

165.         Van Rossum, C. T. M., Buurma-Rethans, E. J. M., Dinnissen, C. S., Beukers, M. H., Brants, H. A. M., & Ocké, M. C. (2020). The diet of the Dutch: Results of the Dutch national food consumption survey 2012-2016.

https://rivm.openrepository.com/handle/10029/624455

166.         DNFCS2012-2016: Usual intake of macro- and micronutrients from foods only, Gewijzigd op: 28 februari 2020. Voedselconsumptiepeiling 2012-2016 (VCP 2012-2016), Rijksinstituut voor Volksgezondheid en Milieu (RIVM), Bilthoven, Statline

https://statline.rivm.nl/#/RIVM/nl/dataset/50073NED/table?ts=1583229881203

166a.       Voedingscentrum. Eerlijk over eten. Magnesium. Accessed 19 May 2023.

https://www.voedingscentrum.nl/encyclopedie/magnesium.aspxBijlagenI

Calcium/magnesium ratio

167.         Liu H, Li N, Jin M, Miao X, Zhang X, Zhong W. Magnesium supplementation enhances insulin sensitivity and decreases insulin resistance in diabetic rats. Iran J Basic Med Sci. 2020 Aug;23(8):990-998. doi: 10.22038/ijbms.2020.40859.9650. PMID: 32952944; PMCID: PMC7478262.

https://pubmed.ncbi.nlm.nih.gov/32952944

168.         King DE, Mainous AG 3rd, Geesey ME, Woolson RF. Dietary magnesium and C-reactive protein levels. J Am Coll Nutr. 2005 Jun;24(3):166-71. doi: 10.1080/07315724.2005.10719461. PMID: 15930481.

https://pubmed.ncbi.nlm.nih.gov/15930481

169.         Guerrero-Romero F, Rodríguez-Morán M. Hypomagnesemia, oxidative stress, inflammation, and metabolic syndrome. Diabetes Metab Res Rev. 2006 Nov-Dec;22(6):471-6. doi: 10.1002/dmrr.644. PMID: 16598698.

https://pubmed.ncbi.nlm.nih.gov/16598698

170.         Cavicchia PP, Steck SE, Hurley TG, Hussey JR, Ma Y, Ockene IS, Hébert JR. A new dietary inflammatory index predicts interval changes in serum high-sensitivity C-reactive protein. J Nutr. 2009 Dec;139(12):2365-72. doi: 10.3945/jn.109.114025. Epub 2009 Oct 28. PMID: 19864399; PMCID: PMC2777480.

https://pubmed.ncbi.nlm.nih.gov/19864399

171.         Nielsen FH. Effects of magnesium depletion on inflammation in chronic disease. Curr Opin Clin Nutr Metab Care. 2014 Nov;17(6):525-30. doi: 10.1097/MCO.0000000000000093. PMID: 25023192.

https://pubmed.ncbi.nlm.nih.gov/25023192

172.         Dai Q, Shu XO, Deng X, Xiang YB, Li H, Yang G, Shrubsole MJ, Ji B, Cai H, Chow WH, Gao YT, Zheng W. Modifying effect of calcium/magnesium intake ratio and mortality: a population-based cohort study. BMJ Open. 2013 Feb 20;3(2):e002111. doi: 10.1136/bmjopen-2012-002111. Erratum in: BMJ Open. 2013 May 31;3(5):null. PMID: 23430595; PMCID: PMC3585973.

https://pubmed.ncbi.nlm.nih.gov/23430595

173.         Yang C, Jing W, Ge S, Sun W. Vitamin D status and vitamin D deficiency risk factors among pregnancy of Shanghai in China. BMC Pregnancy Childbirth. 2021 Jun 18;21(1):431. doi: 10.1186/s12884-021-03889-0. PMID: 34144704; PMCID: PMC8214247.

https://pubmed.ncbi.nlm.nih.gov/34144704

174.         Steingrimsdottir L, Gunnarsson O, Indridason OS, Franzson L, Sigurdsson G. Relationship between serum parathyroid hormone levels, vitamin D sufficiency, and calcium intake. JAMA. 2005 Nov 9;294(18):2336-41. doi: 10.1001/jama.294.18.2336. PMID: 16278362.

https://pubmed.ncbi.nlm.nih.gov/16278362

175.         Heaney RP. Vitamin D and calcium interactions: functional outcomes. Am J Clin Nutr. 2008 Aug;88(2):541S-544S. doi: 10.1093/ajcn/88.2.541S. PMID: 18689398.

https://pubmed.ncbi.nlm.nih.gov/18689398

176.         Bischoff-Ferrari, H., & Willett, W. (2011). Comment on the IOM vitamin D and calcium recommendations: For adult bone health, too low on vitamin D—and too generous on calcium. The Nutrition Source: Harvard University.

https://www.hsph.harvard.edu/nutritionsource/2010/12/25/comment-on-the-iom-vitamin-d-and-calcium-recommendations

177.         Zhao J, Giri A, Zhu X, Shrubsole MJ, Jiang Y, Guo X, Ness R, Seidner DL, Giovannucci E, Edwards TL, Dai Q. Calcium: magnesium intake ratio and colorectal carcinogenesis, results from the prostate, lung, colorectal, and ovarian cancer screening trial. Br J Cancer. 2019 Oct;121(9):796-804. doi: 10.1038/s41416-019-0579-2. Epub 2019 Sep 23. PMID: 31543516; PMCID: PMC6889387.

https://pubmed.ncbi.nlm.nih.gov/31543516

178.         Afonso R, Marques RC, Borges H, Cabrita A, Silva AP. The Usefulness of Calcium/Magnesium Ratio in the Risk Stratification of Early Onset of Renal Replacement Therapy. Diagnostics (Basel). 2022 Oct 12;12(10):2470. doi: 10.3390/diagnostics12102470. PMID: 36292159; PMCID: PMC9600033.

https://pubmed.ncbi.nlm.nih.gov/36292159

179.         Gong TT, Wei YF, Li XY, Liu FH, Wen ZY, Yan S, Qin X, Gao S, Li XQ, Zhao YH, Wu QJ. Pre-diagnostic dietary consumption of calcium and magnesium and calcium-to-magnesium intake ratio and ovarian cancer mortality: results from the ovarian cancer follow-up study (OOPS). Eur J Nutr. 2022 Oct;61(7):3487-3497. doi: 10.1007/s00394-022-02883-2. Epub 2022 May 21. PMID: 35596007.

https://pubmed.ncbi.nlm.nih.gov/35596007

180.         Kisters K, Wessels F, Küper H, Tokmak F, Krefting ER, Gremmler B, Kosch M, Barenbrock M, Hausberg M. Increased calcium and decreased magnesium concentrations and an increased calcium/magnesium ratio in spontaneously hypertensive rats versus Wistar-Kyoto rats: relation to arteriosclerosis. Am J Hypertens. 2004 Jan;17(1):59-62. doi: 10.1016/j.amjhyper.2003.08.012. PMID: 14700514.

https://pubmed.ncbi.nlm.nih.gov/14700514

181.         Zhang A, Cheng TP, Altura BM. Magnesium regulates intracellular free ionized calcium concentration and cell geometry in vascular smooth muscle cells. Biochim Biophys Acta. 1992 Feb 19;1134(1):25-9. doi: 10.1016/0167-4889(92)90024-6. PMID: 1543756. 

https://pubmed.ncbi.nlm.nih.gov/1543756

182.         Trevor Connor. The Importance of the Calcium-to-Magnesium Ratio, 21 november 2020. Accessed 15 May 2023

https://thepaleodiet.com/the-importance-of-the-calcium-to-magnesium-ratio

183.         Barbagallo M, Gupta RK, Dominguez LJ, Resnick LM. Cellular ionic alterations with age: relation to hypertension and diabetes. J Am Geriatr Soc. 2000 Sep;48(9):1111-6. doi: 10.1111/j.1532-5415.2000.tb04788.x. PMID: 10983912.

https://pubmed.ncbi.nlm.nih.gov/10983912

184.         Albrecht Fleckenstein, M.D. Calcium antagonism in Heart and smooth Muscle Experimental Facts and Therapeutic Prospects, ISBN 10: 0471054356 / ISBN 13: 9780471054351, Published by John Wiley & Sons, N.Y., 1983

https://www.abebooks.com/Calcium-antagonism-Heart-smooth-Muscle-Experimental/14393521243/bd

185.         Murphy E, Eisner DA. Regulation of intracellular and mitochondrial sodium in health and disease. Circ Res. 2009 Feb 13;104(3):292-303. doi: 10.1161/CIRCRESAHA.108.189050. PMID: 19213964; PMCID: PMC2662399.

https://pubmed.ncbi.nlm.nih.gov/19213964

186.         Verkhratsky A, Trebak M, Perocchi F, Khananshvili D, Sekler I. Crosslink between calcium and sodium signalling. Exp Physiol. 2018 Feb 1;103(2):157-169. doi: 10.1113/EP086534. Epub 2018 Jan 16. PMID: 29210126; PMCID: PMC6813793.

https://pubmed.ncbi.nlm.nih.gov/29210126

187.         Aksentijević D, Karlstaedt A, Basalay MV, O’Brien BA, Sanchez-Tatay D, Eminaga S, Thakker A, Tennant DA, Fuller W, Eykyn TR, Taegtmeyer H, Shattock MJ. Intracellular sodium elevation reprograms cardiac metabolism. Nat Commun. 2020 Aug 28;11(1):4337. doi: 10.1038/s41467-020-18160-x. PMID: 32859897; PMCID: PMC7455741.

https://pubmed.ncbi.nlm.nih.gov/32859897

188.         Karppanen H, Mervaala E. Sodium intake and hypertension. Prog Cardiovasc Dis. 2006 Sep-Oct;49(2):59-75. doi: 10.1016/j.pcad.2006.07.001. PMID: 17046432.

https://pubmed.ncbi.nlm.nih.gov/17046432

188a.       Adrogué HJ, Madias NE. Sodium surfeit and potassium deficit: keys to the pathogenesis of hypertension. J Am Soc Hypertens. 2014 Mar;8(3):203-13. doi: 10.1016/j.jash.2013.09.003. Epub 2013 Nov 5. PMID: 24200471.

https://pubmed.ncbi.nlm.nih.gov/24200471

189.         Pickering RT, Bradlee ML, Singer MR, Moore LL. Higher Intakes of Potassium and Magnesium, but Not Lower Sodium, Reduce Cardiovascular Risk in the Framingham Offspring Study. Nutrients. 2021 Jan 19;13(1):269. doi: 10.3390/nu13010269. PMID: 33477824; PMCID: PMC7832857.

https://pubmed.ncbi.nlm.nih.gov/33477824

190.         Rafaqat, S., Rafaqat, S., Khurshid, H., & Rafaqat, S. (2022). Electrolyte’s imbalance role in atrial fibrillation: Pharmacological management. International Journal of Arrhythmia, 23(1), 1-10.

https://arrhythmia.biomedcentral.com/articles/10.1186/s42444-022-00065-z

190a.       Chaudhary R, Garg J, Turagam M, Chaudhary R, Gupta R, Nazir T, Bozorgnia B, Albert C, Lakkireddy D. Role of Prophylactic Magnesium Supplementation in Prevention of Postoperative Atrial Fibrillation in Patients Undergoing Coronary Artery Bypass Grafting: a Systematic Review and Meta-Analysis of 20 Randomized Controlled Trials. J Atr Fibrillation. 2019 Jun 30;12(1):2154. doi: 10.4022/jafib.2154. PMID: 31687067; PMCID: PMC6811340.

https://pubmed.ncbi.nlm.nih.gov/31687067

191.         Mente A, Irvine EJ, Honey RJ, Logan AG. Urinary potassium is a clinically useful test to detect a poor quality diet. J Nutr. 2009 Apr;139(4):743-9. doi: 10.3945/jn.108.098319. Epub 2009 Feb 11. PMID: 19211830.

https://pubmed.ncbi.nlm.nih.gov/19211830

192.         Fan MS, Zhao FJ, Fairweather-Tait SJ, Poulton PR, Dunham SJ, McGrath SP. Evidence of decreasing mineral density in wheat grain over the last 160 years. J Trace Elem Med Biol. 2008;22(4):315-24. doi: 10.1016/j.jtemb.2008.07.002. Epub 2008 Sep 17. PMID: 19013359.

https://pubmed.ncbi.nlm.nih.gov/19013359

192a.       Stacey Colino. Fruits and vegetables are less nutritious than they used to be. National Geographic 3 may 2022

https://www.nationalgeographic.co.uk/environment-and-conservation/2022/05/fruits-and-vegetables-are-less-nutritious-than-they-used-to-be

192b.       Darmon N, Darmon M, Maillot M, Drewnowski A. A nutrient density standard for vegetables and fruits: nutrients per calorie and nutrients per unit cost. J Am Diet Assoc. 2005 Dec;105(12):1881-7. doi: 10.1016/j.jada.2005.09.005. PMID: 16321593.

https://pubmed.ncbi.nlm.nih.gov/16321593

193.         Koebnick C, Leitzmann R, García AL, Heins UA, Heuer T, Golf S, Katz N, Hoffmann I, Leitzmann C. Long-term effect of a plant-based diet on magnesium status during pregnancy. Eur J Clin Nutr. 2005 Feb;59(2):219-25. doi: 10.1038/sj.ejcn.1602062. PMID: 15454974.

https://pubmed.ncbi.nlm.nih.gov/15454974

194.         Ströhle A, Waldmann A, Koschizke J, Leitzmann C, Hahn A. Diet-dependent net endogenous acid load of vegan diets in relation to food groups and bone health-related nutrients: results from the German Vegan Study. Ann Nutr Metab. 2011;59(2-4):117-26. doi: 10.1159/000331572. Epub 2011 Dec 2. PMID: 22142775.

https://pubmed.ncbi.nlm.nih.gov/22142775

195.         Thomas D. The mineral depletion of foods available to us as a nation (1940-2002)–a review of the 6th Edition of McCance and Widdowson. Nutr Health. 2007;19(1-2):21-55. doi: 10.1177/026010600701900205. PMID: 18309763.

https://pubmed.ncbi.nlm.nih.gov/18309763

196.         Workinger JL, Doyle RP, Bortz J. Challenges in the Diagnosis of Magnesium Status. Nutrients. 2018 Sep 1;10(9):1202. doi: 10.3390/nu10091202. PMID: 30200431; PMCID: PMC6163803.

https://pubmed.ncbi.nlm.nih.gov/30200431

197.         Davis DR, Epp MD, Riordan HD. Changes in USDA food composition data for 43 garden crops, 1950 to 1999. J Am Coll Nutr. 2004 Dec;23(6):669-82. doi: 10.1080/07315724.2004.10719409. PMID: 15637215.

https://pubmed.ncbi.nlm.nih.gov/15637215

198.         Manuelian CL, Penasa M, Visentin G, Zidi A, Cassandro M, De Marchi M. Mineral composition of cow milk from multibreed herds. Anim Sci J. 2018 Nov;89(11):1622-1627. doi: 10.1111/asj.13095. Epub 2018 Sep 16. PMID: 30221430.

https://pubmed.ncbi.nlm.nih.gov/15699220

199.         Dror DK, Allen LH. Overview of Nutrients in Human Milk. Adv Nutr. 2018 May 1;9(suppl_1):278S-294S. doi: 10.1093/advances/nmy022. PMID: 29846526; PMCID: PMC6008960.

https://pubmed.ncbi.nlm.nih.gov/29846526

200.         Muskiet, F. A. J. (2005). Evolutionaire geneeskunde U bent wat u eet, maar u moet weer worden wat u at. Ned Tijdschr Klin Chem Labgeneesk, 30(3), 163-184.

https://www.natuurdietisten.nl/files/PDF%20publicatie%20Muskiet%20dec%2005%20Ned%20Tijds%20klin%20Chem%20Labgeneeskn%20(2).pdf

201.         Magnesium in the Diet: The Bad News about Magnesium Food Sources. Accessed 15 May 2023

Magnesium in the Diet: The Bad News about Magnesium Food Sources

202.         Sengupta P. Potential health impacts of hard water. Int J Prev Med. 2013 Aug;4(8):866-75. PMID: 24049611; PMCID: PMC3775162.

https://pubmed.ncbi.nlm.nih.gov/24049611

203.         Galan P, Arnaud MJ, Czernichow S, Delabroise AM, Preziosi P, Bertrais S, Franchisseur C, Maurel M, Favier A, Hercberg S. Contribution of mineral waters to dietary calcium and magnesium intake in a French adult population. J Am Diet Assoc. 2002 Nov;102(11):1658-62. doi: 10.1016/s0002-8223(02)90353-6. PMID: 12449291.

https://pubmed.ncbi.nlm.nih.gov/12449291

204.         Azoulay A, Garzon P, Eisenberg MJ. Comparison of the mineral content of tap water and bottled waters. J Gen Intern Med. 2001 Mar;16(3):168-75. doi: 10.1111/j.1525-1497.2001.04189.x. PMID: 11318912; PMCID: PMC1495189.

https://pubmed.ncbi.nlm.nih.gov/11318912

205.         Davies BE. The UK geochemical environment and cardiovascular diseases: magnesium in food and water. Environ Geochem Health. 2015 Jun;37(3):411-27. doi: 10.1007/s10653-014-9671-y. Epub 2014 Dec 21. PMID: 25528218.

https://pubmed.ncbi.nlm.nih.gov/25528218

206.         Rylander R. Drinking water constituents and disease. J Nutr. 2008 Feb;138(2):423S-425S. doi: 10.1093/jn/138.2.423S. PMID: 18203915.

https://pubmed.ncbi.nlm.nih.gov/18203915

Calcium for strong bones

207.         Shin CS, Kim KM. The risks and benefits of calcium supplementation. Endocrinol Metab (Seoul). 2015 Mar 27;30(1):27-34. doi: 10.3803/EnM.2015.30.1.27. PMID: 25827454; PMCID: PMC4384676.

https://pubmed.ncbi.nlm.nih.gov/25827454

208.         Balk EM, Adam GP, Langberg VN, Earley A, Clark P, Ebeling PR, Mithal A, Rizzoli R, Zerbini CAF, Pierroz DD, Dawson-Hughes B; International Osteoporosis Foundation Calcium Steering Committee. Global dietary calcium intake among adults: a systematic review. Osteoporos Int. 2017 Dec;28(12):3315-3324. doi: 10.1007/s00198-017-4230-x. Epub 2017 Oct 12. Erratum in: Osteoporos Int. 2018 Feb 26;: PMID: 29026938; PMCID: PMC5684325.

https://pubmed.ncbi.nlm.nih.gov/29026938

209.         International Osteoporosis Foundation, accessed 16 May 2023

https://www.osteoporosis.foundation/health-professionals/fragility-fractures/epidemiology

210.         Kanis JA, Odén A, McCloskey EV, Johansson H, Wahl DA, Cooper C; IOF Working Group on Epidemiology and Quality of Life. A systematic review of hip fracture incidence and probability of fracture worldwide. Osteoporos Int. 2012 Sep;23(9):2239-56. doi: 10.1007/s00198-012-1964-3. Epub 2012 Mar 15. PMID: 22419370; PMCID: PMC3421108.

https://pubmed.ncbi.nlm.nih.gov/22419370

211.         Hilliard CB. High osteoporosis risk among East Africans linked to lactase persistence genotype. Bonekey Rep. 2016 Jun 29;5:803. doi: 10.1038/bonekey.2016.30. PMID: 27408710; PMCID: PMC4926535.

https://pubmed.ncbi.nlm.nih.gov/27408710

212.         Milking Your Bones, by Linda Palmer 1 januari 2002, accessed 16 May 2023

                http://babyreference.com/milking-your-bones/

213.         Hegsted DM. Fractures, calcium, and the modern diet. Am J Clin Nutr. 2001 Nov;74(5):571-3. doi: 10.1093/ajcn/74.5.571. PMID: 11684522.

https://pubmed.ncbi.nlm.nih.gov/11684522

214.         Hegsted DM. Calcium and osteoporosis. J Nutr. 1986 Nov;116(11):2316-9. doi: 10.1093/jn/116.11.2316. PMID: 3794834.

https://pubmed.ncbi.nlm.nih.gov/3794834

215.         Frassetto L, Morris RC Jr, Sellmeyer DE, Todd K, Sebastian A. Diet, evolution and aging–the pathophysiologic effects of the post-agricultural inversion of the potassium-to-sodium and base-to-chloride ratios in the human diet. Eur J Nutr. 2001 Oct;40(5):200-13. doi: 10.1007/s394-001-8347-4. PMID: 11842945.

https://pubmed.ncbi.nlm.nih.gov/11842945

216.         Chapuy MC, Arlot ME, Delmas PD, Meunier PJ. Effect of calcium and cholecalciferol treatment for three years on hip fractures in elderly women. BMJ. 1994 Apr 23;308(6936):1081-2. doi: 10.1136/bmj.308.6936.1081. PMID: 8173430; PMCID: PMC2539939.

https://pubmed.ncbi.nlm.nih.gov/8173430

217.         Reid IR. Should we prescribe calcium supplements for osteoporosis prevention? J Bone Metab. 2014 Feb;21(1):21-8. doi: 10.11005/jbm.2014.21.1.21. Epub 2014 Feb 28. PMID: 24707464; PMCID: PMC3970298.

https://pubmed.ncbi.nlm.nih.gov/24707464

217a.       Li K, Wang XF, Li DY, Chen YC, Zhao LJ, Liu XG, Guo YF, Shen J, Lin X, Deng J, Zhou R, Deng HW. The good, the bad, and the ugly of calcium supplementation: a review of calcium intake on human health. Clin Interv Aging. 2018 Nov 28;13:2443-2452. doi: 10.2147/CIA.S157523. PMID: 30568435; PMCID: PMC6276611.

https://pubmed.ncbi.nlm.nih.gov/30568435

218.         Bristow SM, Bolland MJ, Gamble GD, Leung W, Reid IR. Dietary calcium intake and change in bone mineral density in older adults: a systematic review of longitudinal cohort studies. Eur J Clin Nutr. 2022 Feb;76(2):196-205. doi: 10.1038/s41430-021-00957-8. Epub 2021 Jun 15. PMID: 34131304.

https://pubmed.ncbi.nlm.nih.gov/34131304

Toxicity of high calcium

219.         RIVM, Zuivel, accessed 18 May 2023

https://www.wateetnederland.nl/resultaten/richtlijnen/zuivel

219a.       Kiesswetter E, Stadelmaier J, Petropoulou M, Morze J, Grummich K, Roux I, Lay R, Himmelsbach L, Kussmann M, Roeger C, Rubach M, Hauner H, Schwingshackl L. Effects of Dairy Intake on Markers of Cardiometabolic Health in Adults: A Systematic Review with Network Meta-Analysis. Adv Nutr. 2023 May;14(3):438-450. doi: 10.1016/j.advnut.2023.03.004. Epub 2023 Mar 11. PMID: 36914032.

https://pubmed.ncbi.nlm.nih.gov/36914032

219b.       Giosuè A, Calabrese I, Vitale M, Riccardi G, Vaccaro O. Consumption of Dairy Foods and Cardiovascular Disease: A Systematic Review. Nutrients. 2022 Feb 16;14(4):831. doi: 10.3390/nu14040831. PMID: 35215479; PMCID: PMC8875110.

https://pubmed.ncbi.nlm.nih.gov/35215479

219c.       Jakobsen MU, Trolle E, Outzen M, Mejborn H, Grønberg MG, Lyndgaard CB, Stockmarr A, Venø SK, Bysted A. Intake of dairy products and associations with major atherosclerotic cardiovascular diseases: a systematic review and meta-analysis of cohort studies. Sci Rep. 2021 Jan 14;11(1):1303. doi: 10.1038/s41598-020-79708-x. PMID: 33446728; PMCID: PMC7809206.

https://pubmed.ncbi.nlm.nih.gov/33446728

219d.       Guo J, Astrup A, Lovegrove JA, Gijsbers L, Givens DI, Soedamah-Muthu SS. Milk and dairy consumption and risk of cardiovascular diseases and all-cause mortality: dose-response meta-analysis of prospective cohort studies. Eur J Epidemiol. 2017 Apr;32(4):269-287. doi: 10.1007/s10654-017-0243-1. Epub 2017 Apr 3. PMID: 28374228; PMCID: PMC5437143.

https://pubmed.ncbi.nlm.nih.gov/28374228

220.         de Jong N, Ocké MC, Branderhorst HA, Friele R. Demographic and lifestyle characteristics of functional food consumers and dietary supplement users. Br J Nutr. 2003 Feb;89(2):273-81. doi: 10.1079/BJN2002772. PMID: 12575912.

https://pubmed.ncbi.nlm.nih.gov/12575912

221.         RIVM, Statline, DNFCS2012-2016; Mean contribution of food sources to the intake of nutrients

Gewijzigd op: 28 februari 2020, accessed 18 May 2023

https://statline.rivm.nl/#/RIVM/nl/dataset/50072NED/table?ts=1583230038838

221a.       Ocke, M. C., Buurma-Rethans, E. J. M., & Fransen, H. P. (2005). Dietary supplement use in the Netherlands: current data and recommendations for future assessment. RIVM rapport 350100001.

https://rivm.openrepository.com/handle/10029/261790

222.         Osteoporose Vereniging. Voeding en supplementen. Accessed 18 May 2023

Voeding en Supplementen

223.         NHG Richtlijn Osteoporose en fractuurpreventie. Initiërende partij(en): CBO, NVR, Laatste aanpassing: januari 2011, accessed 18 May 2023

https://richtlijnen.nhg.org/multidisciplinaire-richtlijnen/osteoporose-en-fractuurpreventie

224.         Heaney RP, Kopecky S, Maki KC, Hathcock J, Mackay D, Wallace TC. A review of calcium supplements and cardiovascular disease risk. Adv Nutr. 2012 Nov 1;3(6):763-71. doi: 10.3945/an.112.002899. PMID: 23153730; PMCID: PMC3648700.

https://pubmed.ncbi.nlm.nih.gov/23153730

225.         Bolland MJ, Barber PA, Doughty RN, Mason B, Horne A, Ames R, Gamble GD, Grey A, Reid IR. Vascular events in healthy older women receiving calcium supplementation: randomised controlled trial. BMJ. 2008 Feb 2;336(7638):262-6. doi: 10.1136/bmj.39440.525752.BE. Epub 2008 Jan 15. PMID: 18198394; PMCID: PMC2222999.

https://pubmed.ncbi.nlm.nih.gov/18198394

226.         Reid IR, Bolland MJ. Calcium supplements: bad for the heart? Heart. 2012 Jun;98(12):895-6. doi: 10.1136/heartjnl-2012-301904. PMID: 22626897.             

https://pubmed.ncbi.nlm.nih.gov/22626897

227.         Bolland MJ, Avenell A, Baron JA, Grey A, MacLennan GS, Gamble GD, Reid IR. Effect of calcium supplements on risk of myocardial infarction and cardiovascular events: meta-analysis. BMJ. 2010 Jul 29;341:c3691. doi: 10.1136/bmj.c3691. PMID: 20671013; PMCID: PMC2912459.

https://pubmed.ncbi.nlm.nih.gov/20671013

228.         Myung SK, Kim HB, Lee YJ, Choi YJ, Oh SW. Calcium Supplements and Risk of Cardiovascular Disease: A Meta-Analysis of Clinical Trials. Nutrients. 2021 Jan 26;13(2):368. doi: 10.3390/nu13020368. PMID: 33530332; PMCID: PMC7910980.

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7910980

228a.       Reid, I. R., & Bristow, S. M. (2019). Calcium and Bone. In Bone Regulators and Osteoporosis Therapy (pp. 259-280). Cham: Springer International Publishing.

https://link.springer.com/chapter/10.1007/164_2019_324

229.         Kassis N, Hariri EH, Karrthik AK, Ahuja KR, Layoun H, Saad AM, Gad MM, Kaur M, Bazarbashi N, Griffin BP, Popovic ZB, Harb SC, Desai MY, Kapadia SR. Supplemental calcium and vitamin D and long-term mortality in aortic stenosis. Heart. 2022 May 25;108(12):964-972. doi: 10.1136/heartjnl-2021-320215. PMID: 35470234.

https://pubmed.ncbi.nlm.nih.gov/35470234

Mechanism of calcium toxicity

230.         Vieth R. Vitamin D and cancer mini-symposium: the risk of additional vitamin D. Ann Epidemiol. 2009 Jul;19(7):441-5. doi: 10.1016/j.annepidem.2009.01.009. Epub 2009 Apr 11. PMID: 19364661.

https://pubmed.ncbi.nlm.nih.gov/19364661

231.         Vieth R. Vitamin D supplementation, 25-hydroxyvitamin D concentrations, and safety. Am J Clin Nutr. 1999 May;69(5):842-56. doi: 10.1093/ajcn/69.5.842. PMID: 10232622.

https://pubmed.ncbi.nlm.nih.gov/10232622

232.         Beall DP, Henslee HB, Webb HR, Scofield RH. Milk-alkali syndrome: a historical review and description of the modern version of the syndrome. Am J Med Sci. 2006 May;331(5):233-42. doi: 10.1097/00000441-200605000-00001. PMID: 16702792.

https://pubmed.ncbi.nlm.nih.gov/16702792

233.         Ali R, Hashmi MF, Patel C. Milk-Alkali Syndrome. 2023 Feb 19. In: StatPearls [Internet]. Treasure Island (FL): StatPearls Publishing; 2023 Jan–. PMID: 32491432.

https://pubmed.ncbi.nlm.nih.gov/32491432

232.         Dusso AS, Brown AJ, Slatopolsky E. Vitamin D. Am J Physiol Renal Physiol. 2005 Jul;289(1):F8-28. doi: 10.1152/ajprenal.00336.2004. PMID: 15951480.

https://pubmed.ncbi.nlm.nih.gov/15951480

233.         Fleet JC. Vitamin D-Mediated Regulation of Intestinal Calcium Absorption. Nutrients. 2022 Aug 16;14(16):3351. doi: 10.3390/nu14163351. PMID: 36014856; PMCID: PMC9416674.

https://pubmed.ncbi.nlm.nih.gov/36014856

234.         Fine KD, Santa Ana CA, Porter JL, Fordtran JS. Intestinal absorption of magnesium from food and supplements. J Clin Invest. 1991 Aug;88(2):396-402. doi: 10.1172/JCI115317. PMID: 1864954; PMCID: PMC295344.

https://pubmed.ncbi.nlm.nih.gov/1864954

234a.       Abrams SA, Grusak MA, Stuff J, O’Brien KO. Calcium and magnesium balance in 9-14-y-old children. Am J Clin Nutr. 1997 Nov;66(5):1172-7. doi: 10.1093/ajcn/66.5.1172. PMID: 9356535.

https://pubmed.ncbi.nlm.nih.gov/9356535

235.         Karp HJ, Ketola ME, Lamberg-Allardt CJ. Acute effects of calcium carbonate, calcium citrate and potassium citrate on markers of calcium and bone metabolism in young women. Br J Nutr. 2009 Nov;102(9):1341-7. doi: 10.1017/S0007114509990195. Epub 2009 Jun 19. PMID: 19538811.

https://pubmed.ncbi.nlm.nih.gov/19538811

236.         Reid IR, Bristow SM, Bolland MJ. Cardiovascular complications of calcium supplements. J Cell Biochem. 2015 Apr;116(4):494-501. doi: 10.1002/jcb.25028. PMID: 25491763.

https://pubmed.ncbi.nlm.nih.gov/25491763

237.         Reid IR, Bolland MJ. Does widespread calcium supplementation pose cardiovascular risk? Yes: the potential risk is a concern. Am Fam Physician. 2013 Feb 1;87(3):Online. PMID: 23418770.

https://pubmed.ncbi.nlm.nih.gov/23418770

238.         Bristow SM, Gamble GD, Stewart A, Horne L, House ME, Aati O, Mihov B, Horne AM, Reid IR. Acute and 3-month effects of microcrystalline hydroxyapatite, calcium citrate and calcium carbonate on serum calcium and markers of bone turnover: a randomised controlled trial in postmenopausal women. Br J Nutr. 2014 Nov 28;112(10):1611-20. doi: 10.1017/S0007114514002785. Epub 2014 Oct 2. PMID: 25274192.

https://pubmed.ncbi.nlm.nih.gov/25274192

239.         Handy CE, Desai CS, Dardari ZA, Al-Mallah MH, Miedema MD, Ouyang P, Budoff MJ, Blumenthal RS, Nasir K, Blaha MJ. The Association of Coronary Artery Calcium With Noncardiovascular Disease: The Multi-Ethnic Study of Atherosclerosis. JACC Cardiovasc Imaging. 2016 May;9(5):568-576. doi: 10.1016/j.jcmg.2015.09.020. Epub 2016 Mar 9. PMID: 26970999; PMCID: PMC4860157.

https://pubmed.ncbi.nlm.nih.gov/26970999

240.         Cannata-Andía JB, Carrillo-López N, Messina OD, Hamdy NAT, Panizo S, Ferrari SL, On Behalf Of The International Osteoporosis Foundation Iof Working Group On Bone And Cardiovascular Diseases. Pathophysiology of Vascular Calcification and Bone Loss: Linked Disorders of Ageing? Nutrients. 2021 Oct 27;13(11):3835. doi: 10.3390/nu13113835. PMID: 34836090; PMCID: PMC8623966.

https://pubmed.ncbi.nlm.nih.gov/34836090

241.         Sage AP, Tintut Y, Demer LL. Regulatory mechanisms in vascular calcification. Nat Rev Cardiol. 2010 Sep;7(9):528-36. doi: 10.1038/nrcardio.2010.115. Epub 2010 Jul 27. PMID: 20664518; PMCID: PMC3014092.

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3014092

242.         Lee SJ, Lee IK, Jeon JH. Vascular Calcification-New Insights Into Its Mechanism. Int J Mol Sci. 2020 Apr 13;21(8):2685. doi: 10.3390/ijms21082685. PMID: 32294899; PMCID: PMC7216228.

https://pubmed.ncbi.nlm.nih.gov/32294899

243.         Hruby A, O’Donnell CJ, Jacques PF, Meigs JB, Hoffmann U, McKeown NM. Magnesium intake is inversely associated with coronary artery calcification: the Framingham Heart Study. JACC Cardiovasc Imaging. 2014 Jan;7(1):59-69. doi: 10.1016/j.jcmg.2013.10.006. Epub 2013 Nov 27. PMID: 24290571; PMCID: PMC3957229.

https://pubmed.ncbi.nlm.nih.gov/24290571

244.         Ter Braake AD, Shanahan CM, de Baaij JHF. Magnesium Counteracts Vascular Calcification: Passive Interference or Active Modulation? Arterioscler Thromb Vasc Biol. 2017 Aug;37(8):1431-1445. doi: 10.1161/ATVBAHA.117.309182. Epub 2017 Jun 29. PMID: 28663256.

https://pubmed.ncbi.nlm.nih.gov/28663256

245.         DiNicolantonio JJ, McCarty MF, O’Keefe JH. Decreased magnesium status may mediate the increased cardiovascular risk associated with calcium supplementation. Open Heart. 2017 May 22;4(1):e000617. doi: 10.1136/openhrt-2017-000617. PMID: 29225900; PMCID: PMC5708314.

https://pubmed.ncbi.nlm.nih.gov/29225900

246.         Rennenberg RJ, de Leeuw PW, Kessels AG, Schurgers LJ, Vermeer C, van Engelshoven JM, Kemerink GJ, Kroon AA. Calcium scores and matrix Gla protein levels: association with vitamin K status. Eur J Clin Invest. 2010 Apr;40(4):344-9. doi: 10.1111/j.1365-2362.2010.02275.x. PMID: 20486996.

https://pubmed.ncbi.nlm.nih.gov/20486996

247.         Cranenburg EC, Vermeer C, Koos R, Boumans ML, Hackeng TM, Bouwman FG, Kwaijtaal M, Brandenburg VM, Ketteler M, Schurgers LJ. The circulating inactive form of matrix Gla Protein (ucMGP) as a biomarker for cardiovascular calcification. J Vasc Res. 2008;45(5):427-36. doi: 10.1159/000124863. Epub 2008 Apr 10. PMID: 18401181.

https://pubmed.ncbi.nlm.nih.gov/18401181

248.         Lin YL, Hsu BG. Vitamin K and vascular calcification in chronic kidney disease: An update of current evidence. Tzu Chi Med J. 2022 Jul 26;35(1):44-50. doi: 10.4103/tcmj.tcmj_100_22. PMID: 36866348; PMCID: PMC9972925.

https://pubmed.ncbi.nlm.nih.gov/36866348

249.         Flore R, Ponziani FR, Di Rienzo TA, Zocco MA, Flex A, Gerardino L, Lupascu A, Santoro L, Santoliquido A, Di Stasio E, Chierici E, Lanti A, Tondi P, Gasbarrini A. Something more to say about calcium homeostasis: the role of vitamin K2 in vascular calcification and osteoporosis. Eur Rev Med Pharmacol Sci. 2013 Sep;17(18):2433-40. PMID: 24089220.

https://pubmed.ncbi.nlm.nih.gov/24089220

MMV maakt wekelijks een selectie uit het nieuws over voeding en leefstijl in relatie tot kanker en andere medische condities.

Inschrijven nieuwsbrief

Magnesium calcium

Nieuws

Alle nieuwsberichten
Verlaat je geitenpaadjes 4

Verlaat je geitenpaadjes

Uitverkochte ledendag in Tilburg 5

Uitverkochte ledendag in Tilburg

Leo Pruimboom: ‘Waarom zou uw immuunsysteem u redden?’ 6

Leo Pruimboom: ‘Waarom zou uw immuunsysteem u redden?’

Advertenties

Lamberts Health Benefits 7
Tradeline 8
De Roode Roos 9

Footer

logo

Centraal Bureau MMV

(0347) 34 69 55

(ma-do 09:00-13.00 uur)

Dit veld is bedoeld voor validatiedoeleinden en moet niet worden gewijzigd.
Name(Vereist)

privacy policy | disclaimer

www.mmv.nl © 2025 | Website realisatie & advies: WebFundament

We gebruiken cookies om ervoor te zorgen dat onze website zo soepel mogelijk draait. Als je doorgaat met het gebruiken van de website, gaan we er vanuit dat ermee instemt.